Parasolid XT Format
May 2001

Important Note

This Document is proprietary to Unigraphics Solutions Inc.
© Copyright 2001 Unigraphics Solutions Inc.
Unpublished - All rights reserved

Restricted Rights Legend: This commercial computer software and related
documentation are provided with restricted rights. Use, duplication or disclosure
by the U.S. Government is subject to the protections and restrictions as set forth
in the Unigraphics Solutions Inc. commercial license for the software and/or
documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as
applicable.Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

The information contained in this document is subject to change without notice
and should not be construed as a commitment by Unigraphics Solutions Inc. who
assume no responsibility for any errors or omissions that may appear in this
documentation.

Trademarks
Parasolid is atrademark of Unigraphics Solutions Inc.

Parker’s House

Unigraphics ot Gag 1P
- UK
Solvtions P+ 4 (1225 316031
An EDS Compan email: ps-support@ugs.com
Web: www.parasolid.com

Parasolid XT Format

Table of Contents

Introduction to the Parasolid XT FOrmatcccccccevviiiiiiiiiiiiii, 1
Types of File DOCUMENLE.........cooiiiiiiiieci e 1
Text and Binary FOIMALSoiiiiiiiiiiiee e 2
Standard File Names and EXtENSIONSccoviiiiiiiiiiiiiiiiieeee e 2
The Alternative SOIULION.uuuieiiiii s 2
(oo [{ox= | I 1=\ Yo 11 | SO 3
ST od 0= o 0 - ST 4
L 1] [0 1Y 0 1= ST 5
POIRt csnran it ATa AT AT A AT AT A AT ATA ATATA ATA NI ATA LI ATA NI ATA LI AT A N eeeees 6
6] £ B 0] o TS oL SR PP 7
Variable-length-nodes . rrnransarsnrananiansaraninra i ara nea na it v . 7
Unresolved indiceS-azarsararsaransarantarantarantara ntara ntara it 7
SIMPIC EXAMPIC .o 7
Physical Layeut s nransanrnraninra nraraninTa R A AR ATA RTATARTATA BT e 10
CommMOR-header nrraranramnraninra i ATa R ATA R ATARTATART AT AT ... 10

Yo o Y o) - S 12
TeXt nrnran T A n I AT AR AT AN AT AN AT AL AT AL AT AL AT AR AT AR ATE NI ATE R e 13
By e e 14

barebiRan -z nnrrrnnniannn T AR R T A R A TR AR R TAS AR A AR R A R AT AR R T s 14

neutral BIRARY rrcrannrannnrsan R s I A R AR A AR AT AR AR TR AR T AR AR T AR s 14
Model-StUEIUFe rnranrarrararanra nraTAnIATA RTATARIATA RTATARTATA AT e 16
TePOlOgY-rraranraranTAn AT AT anT AT ATARIATARTATARIATARTATARTATART i, 16
General-pPoiRtS rrnransaranTa I ATATI ATA RTATARIATA RTATAATATARTARI AT . 16
Entity: definitiONS-nrarrnransnranraransare nranansars nTa A nsanE RTa o, 16

ASEMbBlY-crnnrsasnrrrannr s AR AR R NI A R AR TR AR RIS AR IR AR AT AR s 16

Parasolid XT Format

INSLAINCE..... ettt n e b nn e e 17
270 VSRS 17
S 0] S 17
SHEIL .. 18
G, bbb e ae e 18
[0 0] o FO VRO 19

T USRS PRPROPP 19
o o= S 20
VeSS sannrrann T An R AR T A A R LTI AR R T AR AT A AR TR AR AT AR R TR e 20
ARFBUES - rrrannrannnrrannras AR AR R A R AT AR TR AR A AR TR T 20
L] 0T 0L 21
Node-ids nrrrannraannrsanniaa s A s AR AT A G A AT AR TAG AT AR RIS R . 21

e] = 1) SRR 21
Representation of manifold bodies .., 22
BoaytYPeS crnnrrannnrran R A R AR AR AR AR A AR AT AR AR TR ARR AR R s 22
Schema-PefiRitiCR-rarrrrarsarantaransaranraraniaranraransara nra o, 24
Underhing typesrranrnsarsnranmnrann A nTa I n I n s nTARIAT AT I T A s 24
G ROMAI Y rr s i AT A AT AT A R TATA A TATA R TATAE R TATA R TATE RTATE R TATE RTaT e 25
CLIVES = nnrrman i ann s a an na AT AR R AT A ARSI A A AR ARTT R AT - 26
LN E e e ne e 27
CIRCLE - rrrrannnisanneaannas nnmeaannias anmeannnas s nneaannme e, 28
ELEPSE: s rrrnnnnssnans s annnm ARt AR R T R AR AAR LIS A AN T AR e, 30
B-CURVE (B-9pline CUrVe)- - anrrannniasnnmian nna annma s nnnaa ana . 31
INTERSECTION s ssnnrszannmmannrasannmaanniasanneaannsasnnshoen. 40
TRIMMED- CURVE nnrraannraannrrannrrannrerannrrannreaannroe.... 44

PE_ CURVE {(Foreign GEometiy-CUI'VE) - o innsiannnis nnnman i . 46

e 8 ey A 48

Parasolid XT Format

SUIMTBEES. ...ttt ettt b bbb e 49
PLANE ..ottt ettt nsnenaesennenn e 50
CYLINDER ..ottt ene e 51
CONE ...ttt sttt e sttt e et nte s 53
SPHERE ...ttt 54
TORUS ...ttt sttt se s e aesee s e aeneenen 56
BLENDED_EDGE (Rolling Ball Blend)ccccoourrirriennineeneeseeesenes 57
BLEND_BOUND (Blend boundary SUrface)ccceveveieeiesesiesiesieenns 60
OFFSET- SURF- - nnrannnnss nnns s s nns s s n e s AR a s AR a R RTTa S T 61
B -SURFACE - rrrannnraannrmannmmannnraannmsannned annmaannme . 63
SWEPT _SURF ...ttt 69
SPUN-SURF - crcnannmaannmaaannmaannmaan nne aannma AR nmaannmae . 70
PE_SURF {Foreign Ceometry Surface) ..o 72

PO At o nr s nn AR R T R AR T AR R R AR AR LT A R RS TAAR LI AR AT AA T e 73

TN O nnrraannrran R AR R T A AR AT T AR R T AR R I AR R AT I AR R TI AR R T e 74

Curve aNd-SUITate SoNSoS:. v n s anmman mmms @ A nmea s A e 6 BT a T e 76

CEeMEHC WS ~rrar a Rt AR T IR AR LA A AL LI A AR LI AR AT AR AT A AR T T e e e 76

TOPeIeEY rarerraranT AT AT A AT AR ATARTATART ATA MTATART AT A TR A AT A e 78
WORLD ..ottt st esr et e e s 78
ASSEMBLY .ottt st s 79
INSTANGE: - nrrannnsasnnmaannnsss anmaannmes mnnmaannme s nnmsdeen. 81
BODY nrra A n s AR A R I A AR T AR R LA A AT AR LI A AR A e 83
REGION ::znrrrannissnnisaannia s nnid ARn s s s Rimd ARRTAS AR AT e 86
SHELL-crnnrrannnrsannnaaannmaanniaaan s annsasnnma nnnaantoe. 87
FACE rraannrrannnran anraannnaan nn s A R A R AT AR AA RRTI AR e 88
LOOR. 2 nnnrrrnnrrann A AR T AR R A A AR T A AR LA AR AT AR AR AR AT e reeeas 89
L L eyt A 90

Parasolid XT Format

VERTEX ..ottt ettt 91
EDGEottt sttt ettt b et n et et nenrenennas 92
ASSOCIALEA DALAo e eeeeeeiiiiie e 94
1 PSSR 9
POINTER_LIS BLOCK ctiiirieirieerieisieesie e st sas s seseseenesens 95

FNN I = | 96
FIELD _NAMES. ...ttt 96
ATTRIB_DEF ...ttt 97
ATTRIBUTE - rrirannsasnnsannnis s nna annnas s nsaa ARRGaaanma i, 101
INT-MALUES . rccannmesanmaanniasnnmcsnanns s s nniannnsa s nnsddan. 103
REAL VALUES ...ttt s 104
CHAR VALUES: - rrrannnmsannmsannnss i aannsas i nnmaannmitnm 104
UNICODE VALUES ... 104
POINT -VALUES - rrrssnniiaannms s nniasanns s s iR asnn e s n nnd e 105
MECTOR-MALUES: c annrrasnmsasnniaan nnaa aniaaannia s ania e 105
DIRECTION- MALUES: ~srrrannmraannraannresannrsannesannnssoe. 105
AXAS MALUES cinnnrsnnnmsman i saan it s n it m AR n A A AR TR R R RS R s 105
FAG-VALUES riaannmaannmmaannias anmannnassnnma d nnsasanmmde. 106

€12 (0 = SIS 106
MEMBER OF GROUP ..o 108
Nede-TYpeS raniarantaniniaranrTanTATARIATA AT AT NIATA AT AT ATATE AT A e 110
NGO ClaSS5ES ittt 113
System Attribute DefinitionS ... 114
Hatching rearcnraransansararanransarananra nearananra e arananra nt .. 114
Rlanar HACh. rraannrannnrasannras i nnsaa s aneaa nnsas nnsssanmmte . 115
Radial HatCh rzrnnnsznnnrsannnsannnsannnssnnisannns s nns s annnato.n.. 116
Parametric Hacoh rrrrannrrsannmasnnranannrannnaa annmas nnmaaanmade . 116

-iv -

Parasolid XT Format

Density AUIDULEScooieeee e 117
Density (Of @b0dY)cccvoieeeeeee s 117
LS [0 gl = 0 S 117
e 0] 1= 1] YRS 118
0 0T = 1] S 118
VEITEX DONSITY .ottt et ee e 119

=T o 0] o P UURPPPPIN 119

L7] 0] 0 R 120

Reflectivity - rrnraransansnraninTa nT AT anIATa RTATARIATA RTATARIATA AT e 120

TranslUGeREY-rarraranTATa R T AT AT ATA AT AT AT AT ATA I ATATI TR NI ATAT v 120

NEME iz nra T arananra AT AT AT AT AT AR AT ATA AT AR ATATE AT AT AT ATE AT AT 121

Parasolid XT Format

-V -

Parasolid XT Format

Introduction to the Parasolid
XT Format

This Parasolid Transmit File Format manual describes the formats in which Parasolid
represents model information in external files. Parasolid is a geometric modeling kernel
that can represent wireframe, surface, solid, cellular and general non-manifold models.

Parasolid stores topological and geometric information defining the shape of modelsin
transmit files. These files have a published format so that applications can have access to
Parasolid models without necessarily using the Parasolid kernel. The main audience for
this manual are people who intend to write translators from or to the Parasolid transmit
format.

Reading and writing transmit files are significantly different problems. Reading is simply
aquestion of traversing the transmit file and interpreting the records stored within it.
Writing isa significantly harder process; as well as getting the dataformat of the transmit
file correct applications must also ensure that the many complex and subtle inter-
relationships between the geometric nodes in the file are satisfied.

The presentation of material in this manual is structured to help the construction of
applications that perform read operations. It is strongly advised that the construction of
applications that write filesis only attempted when a copy of Parasolid is available during
the development process to check the consistency and validity of files being produced.

This manual documents the Parasolid V 12.0 transmit file format. Thisformat will change
in subsequent Parasolid releases at which time this manual will be updated. As new
versions of Parasolid can read and write older transmit file formats these changes will not
invalidate applications written based on the information herein.

Types of File Documented

There are anumber of different interface routines in Parasolid for writing transmit files.
Each of these routines can write slightly different combinations of Parasolid data, the
ones that are documented herein are:

e Individual components (or assemblies) written using SAVMOD
e Individual components written using PK_PART _transmit
e Listsof componentswritten using PK_PART _transmit

e Partitionswritten using PK_PARTITION_transmit

-1-

Parasolid XT Format

The basic format used to write datain all the above casesisidentical, there are a small
number of node types that are specific to each of the above file types.

Text and Binary Formats

Parasolid can encode the data it writes out in three different formats:
1. Text (usualy ASCII)

2. Neutral binary

3. Barebinary (thisis not recommended)

In text format all the datais written out as human readable text, they have the advantage
that they are readable but they also have a number of disadvantages. They are relatively
slow to read and write, converting to and from text forms of real numbers introduces
rounding errorsthat can (in extreme cases) cause problems and finally there are
limitations when dealing with multi-byte character sets. Carriage return or line feed
characters can appear anywhere in atext transmit file but other unexpected non-printing
characters will cause Parasolid to reject the file as corrupt.

Neutral binary isamachine independent binary format.

Bare binary is a machine dependent binary format. It is not arecommended format since
the machine type which wrote it must be known before it can be interpreted.

Standard File Names and Extensions

Due to changing operation system restrictions on file names over the years Parasolid has
used several different file extensions to denote file contents. The recommended set of file
extensions are;

e X _Tand.X_Bfor partfiles, .P_T and .P_B for partition files.
Extensions that have been used in the past are:
o xmt_txt, xmp_txt - text format fileson VMS or Unix platforms

e xmt_bin, xmp_bin - binary format fileson VMS or Unix platforms

The Alternative Solution

An dternative solution is to license Parasolid Designer, Parasolid Innovator, Parasolid
Communicator, or Parasolid Educator. For further information on these packages, other
more advanced solutions, and contact information, visit the Parasolid website at
http://www.parasolid.com/.

Parasolid XT Format

Logical Layout

Thelogical layout of a Parasolid transmit fileis:

a human-oriented text header.

Theinitial text header is read and written by applications Frustrums and is not
accessible to Parasolid. Its detailed format is described in the section “Physical
layout'.

a short flag sequence describing the file format, followed by modeller identification
information and userfield size.

The various flag sequences (mixtures of text and numbers) are documented under
"Physical layout'; the content of the modeller identification information is:

o themodeller version used to write the file, as atext string of the form:

: TRANSMIT FILE created by modeller version 1200123
Thisinformation is used by routines such as PK_PART _ask_kernel_version.

e the schema version describing the field sequences of the part nodes as a text
string of the form:

SCH_1200123_12006

This example denotes a file written by Parasolid VV12.0.123 using schema
number 12006: there will be a corresponding file sch_12006 in the Parasolid
schema distribution.

Note that applicationswriting XT files should use version 1200000 and schema
number 12006.

The userfield sizeisasimple integer.

the objects (known as ‘nodes’) in the file in an unordered sequence, followed by a
terminator.

Every nodein thefile is assigned an integer index from 1 upwards (some indices may
not be used). Pointer fields are output as these indices, or as zero for anull pointer.

Each node entry begins with the node type. If the node is of variable length (see
below), thisis followed by the length of the variable field. Theindex of the nodeis
then output, followed by the fields of the node. If the file contains user fields, and the
nodeisvisible at the PK interface, then the fields are followed by the userfield, in
integers.

Parasolid XT Format

The terminator which follows the sequence of nodesis atwo-byte integer with value
1, followed by an index with value 0. Theindex isoutput as‘0’ in atext file, and asa
2-byteinteger with value 1 in abinary file.

The node with index 1 isthe root node of the transmit file as follows:

Contentsof file Type of root node
Body BODY

Assembly ASSEMBLY

Array of parts POINTER_LIS BLOCK
Partition WORLD

Schema

Parasolid permanent structures are defined in a special language akin to C which
generates the appropriate files for a C compiler, the runtime information used by
Parasolid, along with a schema file used during transmit and receive. The schemafile for
version 12.0 isnamed sch_12006 and is distributed with Parasolid. It is not necessary to
have a copy of thisfileto understand the XT format.

For each node type, the schema file has a node specifier of the form

<nodetype> <nodename>; <description>; <transmit /0> <no. of fields> <variable 1/0>
eg.

29 POINT; Point; 16 0

Thisisfollowed by alist of field specifiers which say what fields, and in what order,
occur in the transmit file.

Field specifiers have the format:

<fieldname>; <type>; <transmit 1/0> <node class> <n_elements>
eg.

owner; p; 110111

Nodes and fields with atransmit flag of zero are ephemeral information not written to a
transmit file. Only pointer fields have non-zero node class, in which case it specifies the
set of node types to which thisfield is allowed to point. The element count is interpreted
asfollows:

0 ascalar, asinglevalue

1

n>1

Parasolid XT Format

avariable length field (see below)
an array of nvalues

Note that in the schemafile, fins are referred to as ‘halfedges’, and groups are referred to
as ‘features’. These areinternal names not used elsewhere in this document.

Field types

Thefull list of field typesused in transmit filesis as follows:

u

c

T = S

unsigned byte 0-255

char

unsigned byte 0-1 (i.e. logical)
typedef char logical,

short int

unicode character, output as a short int

int

pointer-index

Small indices (less than 32767) are treated specially in binary files to save space.
See the section below on binary format.

double
These correspond to aregion of thereal line:
typedef struct { double |ow, high; }interval;
array [3] of doubles
These correspond to a 3-space position or direction:
typedef struct { double x,y,z; } vector;
array [6] of doubles
These correspond to a 3-spce region:
typedef struct { interval x,y,z; } box;

Note that the ordering is not the same as presented at Parasolid's external PK or Kl
interfaces.

Parasolid XT Format

h array [3] of doubles

These represent points of intersection between two surfaces; only the position
vector iswritten to atransmit file, as Parasolid will recalculate other data as
required. The structure is documented further in the section on intersection curves.

Point
As an example, consider a POINT; itsformal descriptionis

struct POINT _s /Il Point

{

int node id; /11'$d
union ATTRIB_GROUP u attributes_groups; Il $p
union POINT_OWNER u owner; I1'$p
struct POINT _s *next; 11'$p
struct POINT _s *previous, Il $p
vector pVec; 1l $v
b

typedef struct POINT _s *POINT;

Its corresponding schemafile entry is
29 POINT; Point; 16 0

node id; d; 100

attributes_groups, p; 110190

owner; p; 110110

next; p; 1290

previous; p; 1290

pvec; v; 100

Parasolid XT Format

Pointer classes

In the above example, the attributes _groups field must be of class ATTRIB_GROUP_cl,
the owner must be of class POINT_OWNER_cl, and the next and previous fields must
refer to POINTSs. A full list of nodetypes and node classesis given at the end of the
document.

Each node class corresponds to a union of pointers given in the Schema Definition
section.

Variable-length nodes

Variable-length nodes differ from fixed-length nodes in that their last field is of variable
length, i.e. different nodes of the same type may have different lengths. In the schemathe
length is notionally given as 1, e.g.

struct REAL_VALUES s /! Redl values
{
Double valueq[1]; 11 $f[]
b

Its schema file entry would be
83 REAL_VALUES, Realvaues 111
values; f; 101

The number of entries in each such node isindicated by an integer in the transmit file
between its nodetype and index, so an example might be

83315123

Unresolved indices

In some cases a node will contain an index field which does not correspond to anodein
the transmit file, in this case the index is to be interpreted as zero.

Simple example

Hereis areformatted text example of a sheet circle with acolor attribute on its single
edge:

Parasolid XT Format

** ABCDEFGHIJKLMNOPQRSTUVWXY ZabcdefghijKImnopgrstuvwxyz* * * * * x*%xx

*

**PARASOLID I"#$96& '()* +,-./:;<=>2@[\|_'{ [} ~0123456789% * * ¥ xxxxx %

**PART1;MC=0sf65;MC_MODEL=apha;MC_ID=sdlosf6;0S=0SF1;0S RELEASE=
V4.0;FRU=sdl_parasolid_test_osf64;APPL=unknown;SITE=sdl-cambridge-
u.k.;USER=davidj;FORMAT=text; GUISE=transmit; DA TE=29-mar-2000;

** PART2;SCH=SCH_1200000_12006;USFLD_SIZE=0;

**PARTS3;

* % END_OF_HEADER***

T51: TRANSMIT FILE created by modeller version 120000017 SCH_ 1200000 120060

121120200001e31e-800010313450670
702010041208881T

133301090069
5041109000+000001100
3151007000+0000011001
196501003V

16760710005001
17100111010012700+

1511701090

17120000010700-
1492132001134+00003
8111312149000015
80114016800100003500FFFFTFTFFFFFF2
83315123

791516 SDL/TYSA_COLOUR
7420810130000000000000000000
10

body

list

shell

plane

circle

region

edge

fin

loop

fin (dummy)

face

attribute (variable 1)
atrib_def (variable 1)
real_values (variable 3)
att_def_id (variable 15)
pointer_lis block
terminator

Parasolid XT Format

Note that the tolerance fields of the face and edge are unset, and represented as* ? in the
text transmit file and that the annotations in the column *body’ to ‘terminator’ give the
node type of each line and are not part of the actual file. If the above file had no trailing
spaces, it would be avalid XT file (the leading spaces on some of the lines are
necessary).

Parasolid XT Format

Physical Layout

Parasolid transmit files have two headers;

e atextual introduction containing human-directed information about the part, written
by the Frustrum and not accessible to Parasolid,

e aninternal prefix to the part data, describing to Parasolid the format of the part data
and thus not seen explicitly by an application's Frustrum.

Common header
The Parasolid common header recommended to Frustrum writers consists of ;

e apreamble containing all charactersin the ASCII printing set. Thisis used by the
KID Frustrum to detect obvious network corruption, but could be used to attempt to
translate a text file from one character set to another.

e part 1 data: a sequence of keyword-value pairs, separated by semicolons, of possibly
interesting information. All are optional.

MC = vax, hppa, sparc, ...

/I make of computer

MC_MODEL = 4090, 9000/780, sundm, ...
/I model of computer
MC_ID =
/I unique machine identifier
(O] = vms, HP-UX, SunOs, ...
/I name of operating system
OS RELEASE = V6.2,B.10.20,5.5.1, ...
/I version of operating system
FRU = odl_parasolid_test vax,

mdc_ugii_v7.0_djl_can vrh, ...
/I frustrum supplier and implementation name
APPL = kid, unigraphics, ...

-10-

Parasolid XT Format

/I application which is using Parasolid

SITE =
/I site at which application is running
USER =
/I 1ogin name of user
FORMAT = binary, text, applio
/I format of file
GUISE = transmit, transmit_partition
/I guise of file
KEY =
/I name of key
FILE =
/I name of file
DATE = dd-mmm-yyyy

/I e.q. 5-apr-1998
The‘part 1' datais‘standard’ information which should be accessible to the
Frustrum (e.g. by operating system calls). It is the responsibility of the Frustrum to
gather the relevant information and to format it as described in this specification.

e part 2 data: a sequence of keyword-value pairs, separated by semicolons.

SCH = SCH_m n
/I name of schema key e.g.SCH_1200000_12006
USFLD_SIZE = m

/I 1ength of user field (0 - 16 integer words)

Applications writing XT files must use a schema name of SCH _1200000_12006

e part 3 data: non-standard information, which is only comprehensible to the Frustrum
which wrote it.

The‘part 3' data is non-standard information, which is only comprehensible to the
Frustrum which wrote it. However, other Frustrum implementations must be able to
parseit (in order to reach the end of the header), and it should therefore conform to

-11 -

Parasolid XT Format

the same keyword/value syntax asfor ‘part 1' and ‘part 2' data. However, the choice
and interpretation of keywords for the ‘ part 3' datais entirely at the discretion of the
Frustrum which is writing the header.

e atrailer record.
Anexampleis:
** ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdef ghijKImnoparstuvwxyz * * %+ % x %

*

PARASOLID I"#$96& '()* +,-./:;<=>2@[\|"_'{ [} ~0123456780% ** xx s xx sk xx %

**PART1;MC=vax;MC_MODEL=4090;MC_ID=VAX14;0S=vms,0S_RELEASE=V6.
2;FRU=sdl_parasolid_test_vax;APPL=unknown;SITE=sdl-cambridge
u.k.;USER=ALANS;FORMAT=text;GUISE=transmit;KEY =temp;FILEETEMP.XMT_T
XT;DATE=8-sep-1997,

**PART2,SCH=SCH_701169_7007;USFLD_SIZE=0;
**PARTS,

* % END_OF_HEADER***

Keyword Syntax
All keyword definitions which appear in the three parts of data are written in the form

<name>=<val ue> e.g. MC=hppa; MC_MODEL=9000/ 710;
where
<name> consists of 1 to 80 uppercase, digit, or underscore characters

<val ue> consists of 1 or more ASCII printing characters (except space){xe
"Frustrum:file header:escape sequences'H{ xe "File Header:escape sequences'}

Escape sequences provide away of being able to use the full (7 bit) set of ASCII printing
characters and the new line character within keyword values. Certain characters must be
escaped if they are to appear in akeyword value:

Character Escape sequence

newline n

-12 -

Parasolid XT Format

Space N
semicolon "
uparrow AN

The two character escape sequences may be split by a new line character asthey are
written to file. They must not cause any output lines to be longer than 80 characters.

Only those characters which belong to the ASCII (7 bit) printing sequence, plus the new
line character, can be included as part of a keyword value.

Text

Parasolid has no knowledge of how files are stored. On writing, Parasolid produces an
internal bytestream which is then split into roughly 80-character records separated by
newline characters (\n"). The newlines are not significant.

As operating systems vary in their treatment of text data, on reading all newline and
carriage return characters (\r') are ignored, along with any trailing spaces added to the
records. However, leading spaces are not ignored, and the file must not contain adjacent
space characters not at the end of arecord.

Text XT fileswritten by version 12.1 and later versions use escape sequences to output
the following characters, except for \n' at the end of each line:

null "\0"

carriage return "\n"

line feed "\r"

backslash "\\"

These characters are not escaped by versions 12.0 and earlier.

The flag sequence is the character ‘T'. Thisisfollowed by the length of the modeler
version, separated by a space from the characters of the modeler version, similarly the
schemaversion, finaly the userfield size. For example:

.
51: TRANSMIT FILE created by modeller version 1200000
17 SCH_1200000_12006

-13-

Parasolid XT Format

0

NB: because of ignored layout, what Parasolid would read is

T51: TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060
For partition files, the modeller version string would be given as

63 : TRANSMIT FILE (partition) created by modeller version 1200000

All numbers are followed by a single space to separate them from the next entry. Fields
of type c and | are not followed by a space.

Logical values (0,1) are represented as characters F,T.

There are two special numeric values (-32764 for integral values, -3.14158e13 for
floating point) which are used inside Parasolid to mark an ‘unset’ or ‘null’ value, and
they are represented in atext transmit file as the question mark ‘7. If avector has one
component null, then all three components must be null, and it will be output in atext file
asasingle‘?.

Binary

There are two types of binary file: “bare' binary and neutral binary. They are
distinguished by a short flag sequence at the beginning of thefile. In all cases, the flag
sequenceis followed by the length of the modeller version as a 2-byte integer, the
characters of the modeller version, the length of the schema version as a 4-byte integer,
the characters of the schema version, and finally the userfield size as a 4-byte integer.

bare binary

In bare binary, datais represented in the natural format of the machine which wrote the data.
The flag sequence is the single character 'B' (for ASCII machines, \102"). The data must be
read on a machine with the same natural format with respect to character set, endianness and
floating point format.

neutral binary

In neutral binary, datais represented in big-endian format, with IEEE floating point numbers
and ASCII characters. The flag sequenceis the 4-byte sequence "PS" followed by two zero
bytes, i.e., 'P''S \0'\0". At Parasolid V9, the initial letters are ASCII, thus \120' \123'.

The nodetype at the start of a node is a 2-byte integer, the variable length which may

follow it is a4-byte integer.
Logical values (0,1) are represented as themselvesin 1 byte.

-14 -

Parasolid XT Format

Small pointer indices (in the range 0-32766) are implemented as a 2-byte integer, larger
indices are represented as a pair, thus:

if (index < 32767)

{ /I case: small index
op_short(index +1); /l offset sois>0
}

else
{ /I case: big index
op_short(-(index % 32767 + 1)); // remainder: add 1 so >0
op_short(index / 32767); /I nonzero quotient
}

where op_short outputs a 2-byte integer.

Theinverseis performed on reading:

shortq=0,r;
ip_short(&r);
if (r<0)
{
ip_short(&q);
r=-r,
}
index =q* 32767 +r - 1;

where ip_short reads a 2-byte integer.

-15-

Parasolid XT Format

Model Structure

Topology

This section describes the Parasolid Topology model, it gives an overview of how the
nodesin an XT file are joined together. In this section the word ‘entity’ means a node
whichisvisible to a PK application — atable of which nodes are visible at the PK
interface appearsin the section "Node Types.

The topological representation allows for:

e Non-manifold solids

e Solidswith internal partitions

e Bodies of mixed dimension (i.e. with wire, sheet, and solid "bits)

e Purewire-frame bodies

e Disconnected bodies

Each entity is described, and its properties and links to other entities given.

General points

In this section a set is called finiteif it can be enclosed in aball of finite radius - not that
it has a finite number of members.

A set of pointsin 3-dimensional spaceis called open if it does not contain its boundary.

Back-pointers, next and previous pointersin achain, and derived pointers are not
described explicitly here. For information on this see the following description of the
schema-level model.

Entity definitions

Assembly

An assembly is acollection of instances of bodies or assemblies. It may also contain
construction geometry. An assembly has the following fields:

e A set of instances.

o A set of geometry (surfaces, curves and points).

-16 -

Parasolid XT Format
Instance
Aninstanceis areference to abody or an assembly, with an optional transform:
e Body or assembly.

e Transform. If null, the identity transform is assumed.

Body

A body is a collection of faces, edges and vertices, together with the 3-dimensional
connected regions into which space is divided by these entities. Each region is either
solid or void (indicating whether it represents material or not).

The point-set represented by the body is the disjoint union of the point-sets represented
by its solid regions, faces, edges, and vertices. This point-set need not be connected, but it
must be finite.

A body has the following fields:
o A setof regions.

A body has one or more regions. These, together with their boundaries, make up the
whole of 3-space, and do not overlap, except at their boundaries. One region in the
body is distinguished as the exterior region, which must be infinite; all other regions
in the body must be finite.

o A set of geometry (surfaces, curve and/or points).

¢ A body-type. This may be wire, sheet, solid or general.

Region
A region is an open connected subset of 3-dimensional space whose boundary isa
collection of vertices, edges, and oriented faces.

Regions are either solid or void, and they may be non-manifold. A solid region
contributes to the point-set of its owning body; a void region does not (although its
boundary will).

Two regions may share aface, one on each side.

A region may be infinite, but a body must have exactly one infinite region. The infinite
region of a body must be void.

A region hasthe following fields:
e A logical indicating whether the region is solid.
e A setof shells. The positive shell of aregion, if it hasone, is not distinguished.

-17-

Parasolid XT Format

The shells of aregion do not overlap or share faces, edges or vertices.

A region may have no shells, in which case it represents all space (and will be the only
region in its body, which will have no faces, edges or vertices).

Shell

A shell is aconnected component of the boundary of aregion. As such it will be defined
by acollection of faces, each used by the shell on one “side, or on both sides; and some
edges and vertices.

A shell hasthe following fields:
o A setof (face, logical) pairs.

Each pair represents one side of aface (where true indicates the front of the face, i.e.
the side towards which the face normal points), and means that the region to which
the shell belongs lies on that side of the face. The same face may appear twicein the
shell (once with each arientation), in which case the face is a 2-dimensional cut
subtracted from the region which owns the shell.

e A setof wireframe edges.

Edges are called wir eframe if they do not bound any faces, and so represent 1-
dimensional cutsin the shell's region. These edges are not shared by other shells.

o A vertex.

Thisisonly non-null if the shell isan acorn shell, i.e. it represents a O-dimensional
holeinitsregion, and has one vertex, no edges and no faces.

A shell must contain at least one vertex, edge, or face.

Face

A face is an open finite connected subset of a surface, whose boundary is a collection of
edges and vertices. It is the 2-dimensional analogy of aregion.

A face has the following fields:
o A setof loops. A face may have zero loops (e.g. afull spherical face), or any number.
e Surface. This may be null, and may be used by other faces.

e Sense. Thislogical indicates whether the normal to the faceis aligned with or
opposed to that of the surface.

-18 -

Parasolid XT Format

Loop

A loop is a connected component of the boundary of aface. It isthe 2-dimensional
analogy of ashell. Assuch it will be defined by a collection of fins and a collection of
vertices.

A loop has the following fields:
e Anorderedring of fins.

Each fin represents the oriented use of an edge by aloop. The sense of the fin
indicates whether the loop direction and the edge direction agree or disagree. A loop
may not contain the same edge more than once in each direction.

The ordering of the fins represents the way in which their owning edges are
connected to each other via common verticesin the loop (i.e. noseto tail, taking the
sense of each fin into account).

Theloop direction is such that the face is locally on the left of the loop, as seen from
above the face and looking in the direction of the loop.

e A vertex.

Thisisonly non-null if the loop isan isolated loop, i.e. has no fins and represents a
O-dimensional hole in the face.

Conseguently, aloop must consist either of:
e A singlefin whose owning ring edge has no vertices, or
e Atleast onefin and at least one vertex, or

e A singlevertex.

Fin
A fin represents the oriented use of an edge by aloop.
A fin has the following fields:

e A logical senseindicating whether the fin's orientation (and thus the orientation of its
owning loop) is the same as that of its owning edge, or different.

e A curve Thisisonly non-null if the fin’s edge is tolerant, in which case every fin of
that edge will reference atrimmed SP-curve. The underlying surface of the SP-curve
must be the same as that of the corresponding face. The curve must not deviate by
more than the edge tolerance from curves on other fins of the edge, and its ends must
be within vertex tolerance of the corresponding vertices.

Note that fins are referred to as ‘halfedges' in the Schemafile.

-19-

Parasolid XT Format

Edge

An edgeis an open finite connected subset of acurve; its boundary is a collection of zero,

one or two vertices. It isthe 1-dimensional analogy of aregion.

An edge has the following fields:

e Start vertex.

e End vertex. If one vertex is null, then so is the other; the edge will then be called a
ring edge.

e Anordered ring of distinct fins.

The ordering of the fins represents the spatial ordering of their owning faces about
the edge (with aright-hand screw rule, i.e. looking in the direction of the edge the fin
ordering is clockwise). The edge may have zero or any number of fins; if it has none,
itiscaled awireframe edge.

e A curve. Thiswill be null if the edge has atolerance. Otherwise, the vertices must lie
within vertex tolerance of this curve, and if it isa Trimmed Curve, they must lie
within vertex tolerance of the corresponding ends of the curve. The curve must aso
liein the surfaces of the faces of the edge, to within modeller resolution.

e Sense. Thislogica indicates whether the direction of the edge (start to end) isthe
same as that of the curve.

e A tolerance. If thisis null-double, the edge is accur ate and is regarded as having a
tolerance of half the modeller linear resolution, otherwise the edge is called toler ant.

Vertex
A vertex represents a point in space. It is the O-dimensional analogy of aregion.

A vertex hasthe following fields:
e A geometric paint.

o A tolerance. If thisis null-double, the vertex is accurate and is regarded as having a
tolerance of half the modeller linear resolution.

Attributes

An attribute is an entity which contains data, and which can be attached to any other
entity except attributes, fins, lists, transforms or attribute definitions. An attribute hasthe
following fields:

o Definition. An attribute definition is an entity which defines the number and type of
the datafieldsin an attribute, which entities may have such an attribute attached, and

-20-

Parasolid XT Format

what happens to the attribute when its owning entity is changed. (Only those attribute
definitions referenced by attributes in the part occur in the transmit file).

e Owner.
e Fields. These are datafields consisting of one or more integers, doubles, vectors etc.

There are anumber of system attribute definitions which Parasolid creates on startup.
These are documented in the section “System Attribute Definitions. Parasolid
applications can create user attribute definitions during a Parasolid session. These are
transmitted along with any attributes that use them.

Groups

A group isacollection of entities in the same part. Groups in assemblies may contain
instances, surfaces, curves and points. Groups in bodies may contain regions, faces,
edges, vertices, surfaces, curves and points. Groups have

e Owning part.
o A set of member entities.

e Type. Thetype of the group specifies the allowed type of its members, e.g. a‘face’
group in abody may only contain faces, whereas a‘mixed’ group may have any valid
members.

Node-ids

All entitiesin a part, other than fins, have a non-zero integer node-id which is unique
within a part. Thisisintended to enable the entity to be identified within a transmit file.

Entity matrix

Thus the relations between entities can be represented in matrix form as follows. The
numbers represent the number of distinct entities connected (either directly or indirectly)
to the given one.

Body Region | Shell Face Loop Fin Edge Vertex
Body - >0 any any any any any any
Region 1 - any any any any any any
Shell 1 1 - any any any any any
Face 1 1-2 1-2 - any any any any

-21-

Parasolid XT Format

Loop 1 1-2 1-2 1 - any any any
Fin 1 1-2 1-2 1 1 - 1 0-2
Edge 1 any any any any any - 0-2
Vertex 1 any any any any any any -

Representation of manifold bodies

Body types
Parasolid bodies have afield body_type which takes values from an enumeration
indicating whether the body is

o solid, representing a manifold 3-dimensional volume, possibly with internal voids. It
need not be connected.

e sheet, representing a 2-dimensional subset of 3-space which is either manifold or
manifold with boundary (certain cases are not strictly manifold — see below for
details). It need not be connected.

e wire, representing a 1-dimensional subset of 3-space which is either manifold or
manifold with boundary, and which need not be connected. An acor n body, which
represents a single O-dimensional point in space, aso has body-type wire.

e general - none of the above.

A general body is not necessarily non-manifold, but at the same timeit is not constrained
to be manifold, connected, or of a particular dimensionality (indeed, it may be of mixed
dimensionality).

Restrictions on entity relationships for manifold body types

Salid, sheet, and wire bodies are best regarded as specia cases of the topological model;
for convenience we call them the manifold body types (although as stated above, a
general body may also be manifold).

In particular, bodies of these manifold types must obey the following constraints:

e Anacorn body must consist of asingle void region with asingle shell consisting of a
single vertex.

e A wirebody must consist of asingle void region, with one or more shells, consisting
of one or more wireframe edges and zero or more vertices (and no faces). Every
vertex in the body must be used by exactly one or two of the edges (so, in particular,
there are no acorn vertices).

-22 -

Parasolid XT Format

So each connected component will be either: closed, where every vertex has exactly
two edges; or open, where all but two vertices have exactly two edges each, and the

A wireiscalled openif all its components are open, and closed if all its components
are closed.

Solid and sheet bodies must each contain at |east one face; they may not contain any
wireframe edges or acorn vertices.

A solid body must consist of at least two regions; at least one of its regions must be
solid. Every face in a solid body must have a solid region on its negative side and a
void region on its positive side (in other words, every face forms part of the boundary
of the solid, and the face normals always point away from the solid).

Every edge in a solid body must have exactly two fins, which will have opposite
senses. Every vertex in asolid body must either belong to asingle isolated loop, or
belong to one or more edges; in the latter case, the faces which use those edges must
form a single edgewise-connected set (when considering only connections viathe
edges which meet at the vertex).

These constraints ensure that the solid is manifold.

All the regions of a sheet body must be void. It is known as an open sheet if it has
one region, and a closed sheet if it has no boundary.

Every edge in a sheet body must have exactly one or two fins; if it has two, these
must have opposite senses. In a closed sheet body, all the edges will have exactly two
fins. Every vertex in a sheet body must either belong to a single isolated loop, or
belong to one or more edges; in the latter case, the faces which use those edges must
either form a single edgewise-connected set where all the edges involved have
exactly two fins, or any number of edgewise-connected sets, each of which must
involve exactly two edges with one fin each (again, considering only connections via
the edges which meet at the vertex).

Note that, although the constraints on edges and vertices in a sheet body are very
similar to those which apply to a solid, in this case they do not guarantee that the
body will be manifold; indeed, the rather complicated rules about vertices in an open
sheet body specifically allow bodies which are non-manifold (such as a body
consisting of two square faces which share asingle corner vertex, say).

-23-

Parasolid XT Format
Schema Definition

Underlying types

union CURVE_OWNER _u

{

struct EDGE_s *edge;
struct FIN_s *fin;

struct BODY _s *body;
struct ASSEMBLY _s *assembly;
struct WORLD _s *world;

b

union SURFACE_OWNER _u

{

struct FACE_s *face;
struct BODY _s *body;
struct ASSEMBLY _s *assembly;
struct WORLD_s *world;

¥

union ATTRIB_GROUP_u

{

struct ATTRIBUTE s *attribute;

struct GROUP_s *group;

struct *member_of_group;
MEMBER_OF_GROUP_s

b

-24-

Parasolid XT Format

typedef union ATTRIB_GROUP_u ATTRIB_GROUP,

Geometry

union CURVE_u
{
struct LINE_s
struct CIRCLE_s
struct ELLIPSE s
struct INTERSECTION_s
struct TRIMMED_CURVE_s
struct PE_CURVE_s
struct B_CURVE_s
struct SP_CURVE_s
h

typedef union CURVE_u CURVE;

union SURFACE _u
{
struct PLANE_s
struct CYLINDER_s
struct CONE_s
struct SPHERE s
struct TORUS s
struct BLENDED EDGE s
struct BLEND_BOUND _s
struct OFFSET_SURF_s
struct SWEPT_SURF _s
struct SPUN_SURF s

*line;

*circle;

*ellipse;
*intersection;
*trimmed_curve;
*pe_curve;

*b _curve;

*gp_curve;

*plane;
*cylinder;
*cone;

*gsphere;

*torus,
*blended_edge;
*blend_bound;
*offset_surf;
*swept_surf;

*spun_surf;

-25-

Parasolid XT Format

struct PE_SURF _s
struct B_SURFACE_s

h

typedef union SURFACE _u

union GEOMETRY _u

{

union SURFACE u
union CURVE u
struct POINT _s

struct TRANSFORM _s

h

*pe_surf;
*b_surface;

SURFACE;

surface;
curve;
*point;
*transform;

typedef union GEOMETRY_u GEOMETRY;

Curves

In the following field tables, ‘ pointer0’ means a reference to another node which may be

null. ‘pointer’ means a non-null reference.

All curve nodes share the following common fields:

Field name Datatype Description
node_id int Integer value unique to curve in part
attributes groups | pointerO Attributes and groups associated with curve
owner pointer0 topological owner
next pointer0 next curve in geometry chain
previous pointer0 previous curve in geometry chain
geometric_owner | pointerO geometric owner node
sense char sense of curve: ‘+' or ‘- (see end of Geometry

section)

-26 -

Parasolid XT Format

struct ANY_CURVE s /I Any Curve
{
int node id; /1 $d
union ATTRIB_GROUP u attributes_groups; Il $p
union CURVE_OWNER u owner; Il $p
union CURVE u next; Il $p
union CURVE u previous, Il $p
struct *geometric_owner; Il $p
GEOMETRIC_OWNER_s
char sense; Il '$c
¥

typedef struct ANY_CURVE_s*ANY_CURVE;

LINE

A straight line has a parametric representation of the form:

Rt)=P+tD

where

e Pisapoaint ontheline

P F/-”—/_D’
e Disitsdirection
Field name Datatype Description
pvec vector point on the line
direction vector direction of the line (a unit vector)

-27-

Parasolid XT Format

struct LINE_s==ANY_CURVE s

{

int

union ATTRIB_GROUP u
union CURVE_OWNER u
union CURVE_u

union CURVE u

struct
GEOMETRIC_OWNER s

char
vector
vector
b
typedef struct LINE_ s *LINE;

CIRCLE

/I Straight line

node id;
attributes_groups;
owner;

next;

previous,

*geometric_ owner;

sense;
pvec;
direction;

A circle has a parametric representation of the form

R(t) =C+r X cos(t) +r Y sin(t)
Where
e Cisthecentreof thecircle

e ristheradiusof thecircle

e X andY arethe axesin the plane of the circle.

- 28 -

/I1'$d
I1'$p
11 $p
11'$p
11'$p
I1'$p

Il $c
II'$v
I $v

Parasolid XT Format

Field Datatype Description

name

centre vector Centre of circle

normal vector Normal to the plane containing the circle (a unit vector)
X_axis vector X axisin the plane of the circle (a unit vector)
radius double Radius of circle

TheY axisin the definition above is the vector cross product of the normal and x_axis.

struct CIRCLE_s== ANY_CURVE_s /I Circle

{

int node id; /1l $d
union ATTRIB_GROUP u attributes_groups; Il $p
union CURVE_OWNER_u owner; I1'$p
union CURVE_u next; I1'$p
union CURVE u previous, Il $p
struct *geometric_owner; Il $p
GEOMETRIC_OWNER_s

char sense; Il $c
vector centre; Il $v
vector normal; I1'$v
vector X_axis; Il $v

-29-

Parasolid XT Format
double radius; /1 $f

h
typedef struct CIRCLE_s *CIRCLE;

ELLIPSE
An €ellipse has a parametric representation of the form

R() =C+aX cos(t) + b Y sin(t)
where

e Cisthecentreof thecircle
e Xisthemajor axis

e risthemajor radius

€ +Xacos{ t) + Ybam{ t)

e Y and b are the minor axis and minor radius respectively.

Field name Datatype Description
centre Vector Centre of ellipse
normal Vector Normal to the plane containing the ellipse
(aunit vector)
X_axis Vector major axisin the plane of the ellipse (a unit vector)
major_radius Double major radius
minor_radius Double minor radius

-30-

Parasolid XT Format

The minor axis (Y) in the definition above is the vector cross product of the normal and
X_axis.

struct ELLIPSE s== ANY_CURVE_s // Ellipse

{

int node id; /1 $d
union ATTRIB_GROUP u attributes_groups; Il $p
union CURVE_OWNER u owner; Il $p
union CURVE_u next; I1'$p
union CURVE_u previous, 11'$p
struct GEOMETRIC_OWNER_s *geometric_owner; Il $p
vector centre; I1'$v
vector normal; Il $v
vector X_axis, Il $v
double major_radius, 1 $f
double minor_radius; 1 $f

1
typedef struct ELLIPSE s *ELLIPSE;

B_CURVE (B-splinecurve)

Parasolid supports B spline curvesin full NURBS format. The mathematical description
of these curvesis:

e Non Uniform Rational B-splinesas (NURBYS)

n-1
Bifiw
P(fj - i;] H 171
—n-1r
Zbi(fjwi
i=n

e and the more simple Non Uniform B-spline

-1
Pty = o
-31-

Parasolid XT Format

Where:
n = number of vertices (n_verticesin the PK standard form)

Vo V.1 arethe B-spline vertices
W .- W1 arethe weights

bj (t),] = 0...n-1 are the B-spline basis functions

KNOT VECTORS

The parameter t above is global. The user supplies an ordered set of values of t at specific
points. The points are called knots and the set of values of t is called the knot vector.
Each successive value in the set must be greater than or equal to its predecessor. Where
two or more such values are the same we say that the knots are coincident, or that the
knot has multiplicity greater than 1. In this caseit is best to think of the knot set as
containing anull or zero length span. The principal use of coincident knotsisto alow the
curve to have less continuity at that point than is formally required for aspline. A curve
with aknot of multiplicity equal to its degree can have a discontinuity of first derivative
and hence of tangent direction. Thisisthe highest permitted multiplicity except at the
first or last knot where it can go as high as (degree+1) .

In order to avoid problems associated, for example with rounding errors in the knot set,
Parasolid stores an array of distinct values and an array of integer multiplicities. Thisis
reflected in the standard form used by the PK for input and output of B-curve data.

Most algorithmsin the literature, and the following discussion refer to the expanded knot
set in which aknot of multiplicity n appears explicitly n times.

THE NUMBER OF KNOTS AND VERTICES

The knot set determines a set of basis functions which are bell shaped, and non zero over
aspan of (degree+1) intervals. One basis function starts at each knot, and each one
finishes (degree + 1) knots higher. The control vectors are the coefficients applied to
these basis functions in alinear sum to obtain positions on the curve. Thusit can be seen
that we require the number of knotsn_knots = n_vertices + degree + 1

THE VALID RANGE OF THE B-CURVE

So if the knot set is numbered {to to t,, knots1 } it Can be seen then that it is only after tgegee
that sufficient (degree + 1) basis functions are present for the curve to be fully defined,
and that the B-curve ceases to be fully defined after t,, xnots- 1 - degree-

-32-

Parasolid XT Format

The first degree knots and the last degree knots are known as the imaginary knots
because their parameter values are outside the defined range of the B-curve.

PERIODIC B-CURVES

When the end of a B-curve meetsits start sufficiently smoothly Parasolid allowsit to be
defined to have periodic parametrisation. That isto say that if the valid range were from
taegree 1O th knots- 1 - degree then the difference between these valuesiis called the period and
the curve can continue to be evaluated with the same point reoccurring every period.

The minimal smoothness requirement for periodic curvesin Parasolid is tangent
continuity, but we strongly recommend C gegee1 , OF CONtinuity in the (degree-1)"
derivative. Thisin turn is best achieved by repeating the first degree vertices at the end,
and by matching knot intervals so that counting from the start of the defined range, tuegree,
the first degree intervals between knots match the last degree intervals, and similarly
matching the last degree knot intervals before the end of the defined range to the first
degreeintervals.

CLOSED B-CURVES
A periodic B-curve must also be closed, but is permitted to have a closed Beurve that is
not periodic.

In this case the rules for continuity are relaxed so that only C, or positional continuity is
required between the start and end. Such closed non-periodic curves are not able to be
attached to topology.

RATIONAL B-CURVE

In the rational form of the curve, each vertex is associated with aweight, which increases
or decreases the effect of the vertex without changing the curve hull. To ensure that the
convex hull property isretained, the curve equation is divided by a denominator which
makes the coefficients of the vertices sum to one.

n-1
> byt
Pipp=4i0_

x-1
> Byt
i=0

Where wy... W, ; are weights.

Each weight may take any positive value, and the larger the value, the greater the effect
of the associated vertex. However, it is the relative sizes of the weightswhich is

-33-

Parasolid XT Format

important, as may be seen from the fact that in the equation given above, all the weights
may be multiplied by a constant without changing the equation.

In Parasolid the weights are stored with the vertices by treating these as having an extra
dimension. In the usual case of a curve in 3-d cartesian space this means that vertex_dim
is4, thex, y, z values are multiplied through by the corresponding weight and the 4th
valueisthe weight itself.

Parasolid XT Format

B-SURFACE DEFINITION

LRy EJJ-(vj wi?-lf'i?-

By EJJ{I-') Wi
i=0F=0

The B-surface definition is best thought of as an extension of the B-curve definition into
two parameters, usualy called u and v. Two knot sets are required and the number of
control verticesis the product of the number that would be required for a curve using
each knot vector. The rules for periodicity and closure given above for curves are
extended to surfacesin an obvious way.

For attachment to topology a B-surface is required to have G; continuity. That is to say
that the surface normal direction must be continuous.

Parasolid does not support modelling with surfaces that are self-intersecting or contain
cusps. Although they can be created they are not permitted to be attached to topology.

Field name Datatype Description
nurbs Pointer Geometric definition
data PointerO Aucxiliary information
struct B_CURVE_s==ANY_CURVE_s /[B curve

{
int node _id; I/ $d
union ATTRIB_GROUP_u attributes_groups, I1'$p
union CURVE_OWNER u owner; Il $p
union CURVE u next; Il $p
union CURVE_u previous; I1'$p
struct GEOMETRIC_OWNER_s *geometric_owner; I1'$p
char sense; Il '$c
struct NURBS_CURVE s *nurbs; I1'$p

-35-

Parasolid XT Format
struct CURVE _DATA s *data; Il $p
|3

typedef struct B_CURVE s *B_CURVE;

The datastored in an XT filefor aNURBS CURVE s

Field name Datatype Description
degree Short degree of the curve
n_vertices Int number of control vertices (‘poles’)
vertex_dim Short dimension of control vertices
n_knots Int number of distinct knots
knot_type Byte form of knot vector
periodic Logical trueif curveis periodic
closed Logical trueif curveis closed
rational Logical trueif curveisrationa
curve_form Byte shape of curve, if special
bspline_vertices Pointer control vertices node
knot_mult Pointer knot multiplicities node
knots Pointer knots node

The knot_type enum is used to describe whether or not the knot vector has a certain
regular spacing or other common property:

typedef enum
{
SCH_unset =1,
SCH_non_uniform = 2,
SCH_uniform = 3,

/[Unknown
// Known to be not special
/I Uniform knot set

SCH_quasi_uniform = 4,
SCH_piecewise bezier =5,

// Uniform apart from bezier ends
I/l Internal multiplicity of order-1

-36-

Parasolid XT Format

SCH_bezier ends=6 I/l Bezier ends, no other property
}
SCH_knot_type t;

A uniform knot set is one where al the knots are of multiplicity one and are equally
spaced. A curve has bezier ends if the first and last knots both have multiplicity ‘order’.

The curve_form enum describes the geometric shape of the curve. The parameterisation
of the curveis not relevant.

typedef enum
{
SCH_unset =1, /I Form is not known
SCH_arbitrary =2, I/ Known to be of no particular shape

SCH_polyline =3,
SCH_circular_arc =4,
SCH_élliptic_ arc =5,
SCH_parabolic_arc =6,
SCH_hyperbolic_arc=7
}

SCH_curve form t;

struct NURBS CURVE s /I NURBS curve

{

short degree; I1'$n
int n_vertices; I/ $d
short vertex_dim; /Il $n
int n_knots; /1l $d
SCH_knot_type t knot_type; /Il'$u
logical periodic; I1'$l
logical closed; 19l
logical rational; I1'$l

-37-

Parasolid XT Format

SCH_curve form t curve form; Il $u
struct BSPLINE_VERTICES s *bspline_vertices, I1'$p
struct KNOT_MULT _s *knot_mult; I1'$p
struct KNOT_SET s *knots; Il $p
|3

typedef struct NURBS _CURVE_s*NURBS _CURVE;

The bspline vertices node is simply an array of doubles; ‘vertex_dim’ doubles together
define one control vertex. Thus the length of the array isn_vertices* vertex_dim.

struct BSPLINE_VERTICES s /I B-spline vertices
{
double verticeg[11]; 11 $f[]
};

typedef struct BSPLINE_VERTICES_s*BSPLINE_VERTICES;

The knot vector of the NURBS CURVE is stored as an array of distinct knots and an
array describing the multiplicity of each distinct knot. Hence the two nodes

struct KNOT_SET _s /I Knot set
{
double knotg 17; 11 $f[]
1

typedef struct KNOT_SET_s*KNOT_SET;

and

struct KNOT_MULT _s Il Knot multiplicities
{
short mult[17; 11 $n[]
|3

typedef struct KNOT_MULT_s*KNOT_MULT;

The datastored in an XT filefor a CURVE_DATA nodeis:

typedef enum

- 38 -

Parasolid XT Format

{

SCH_unset =1, I check has not been performed

SCH_no_self_intersections = 2, /I passed checks

SCH_self intersects = 3, /I fails checks

SCH_checked ok in_old version=4 /I see below

}

SCH_sdlf _int_t;
struct CURVE_DATA_s I/l curve_data

{
SCH_sdlf int_t self int; /Il $u
Struct HELIX_CU_FORM_s *analytic_form I1'$p
b

typedef struct CURVE_DATA_s*CURVE _DATA;

The self-intersection enum describes whether or not the geometry has been checked for
self-intersections, and whether such self-intersections were found to exist:

The SCH_checked ok in_old version enum indicates that the self-intersection check has

been performed by a Parasolid version 5 or earlier but not since.

If the analytic_form field is not null, it will point to a HELIX_CU_FORM node, which
indicates that the curve has a helical shape, as follows:

struct HELIX_CU_FORM _s

{

vector axis_pt Il $v
vector axis_dir II'$v
vector point II'$v
char hand Il '$c
interval turns I1'$i

double pitch 11 $f
double tol 11 $f

-39-

Parasolid XT Format

h
typedef struct HELIX_CU_FORM_s*HELIX_CU_FORM;

The axis_pt and axis_dir fields define the axis of the helix. The hand fieldis*+ for a
right-handed and ‘-’ for aleft-handed helix. A representative point on the helix isat turn
position zero. The turns field gives the extent of the helix relative to the point. For
instance, an interval [0 10] indicates a start position at the point and an end 10 turns along
the axis. Pitch is the distance travelled along the axisin oneturn. Tol isthe accuracy to
which the owning bcurve fits this specification.

INTERSECTION

An intersection curveis one of the branches of a surface / surface intersection. Parasolid
represents these curves exactly; the information held in an intersection curve node is
sufficient to identify the particular intersection branch involved, to identify the behavior
of the curve at its ends, and to evaluate precisely at any point in the curve. Specifically,
the datais:

e Thetwo surfacesinvolved in the intersection.

e Thetwo ends of the intersection curve. These arereferred to as the ‘limits' of the
curve. They identify the particular branch involved.

o Anordered array of points aong the curve. Thisarray isreferred to asthe ‘ chart’ of
the curve. It defines the parameterization of the curve, which increases as the array
index increases.

The natural tangent to the curve at any point (i.e. in the increasing parameter direction) is
given by the vector cross-product of the surface normals at that point, taking into account
the senses of the surfaces.

Singular points where the cross-product of the surface normalsis zero, or where one of
the surfacesis degenerate, are called terminators. Intersection curves do not contain
terminatorsin their interior. At terminators, the tangent to the curveis defined by the
limit of the curve tangent as the curve parameter approaches the terminating value.

-40-

Parasolid XT Format

Field name Datatype Description
Surface pointer array [2] Surfaces of intersection curve
chart Pointer array of hvecs on the curve — see below
start Pointer start limit of the curve
end Pointer end limit of the curve

struct INTERSECTION_s==ANY_CURVE_s

{

int

union ATTRIB_GROUP u
union CURVE_OWNER u
union CURVE u
union CURVE u

struct GEOMETRIC_OWNER_s

char

union SURFACE _u
struct CHART _s
struct LIMIT_s
struct LIMIT_s

h

/I Intersection
node _id; I/l $d
attributes_groups; Il $p
owner; Il $p
next; I1'$p
previous; Il $p
* geometric_owner; I1'$p
sense; Il '$c
surface] 21]; 11 '$p[2]
*chart; I1'$p
*start; I1'$p
*end; I1'$p

typedef struct INTERSECTION_s *INTERSECTION;
A point on an intersection curveis stored in a data structure called an *hvec’ (hepta-vec,

-41 -

or 7-vector):
typedef struct hvec_s Il hepta_vec
{
vector Pvec; I position
double u2]; /I surface parameters
double v[2];
vector Tangent; /I curve tangent

Parasolid XT Format

double t; I curve parameter
} hvec;

where

e pvecisapoint common to both surfaces

e U[] and v[] arethe u and v parameters of the pvec on each of the surfaces.

e tangent isthe tangent to the curve at pvec. Thiswill be equal to the (normalised)
vector cross product of the surface normals at pvec, when this cross product is non-
zero. These surface normals take account of the surface sensefields.

Note that only the pvec part of an hvec is actually transmitted.

The chart data structure essentially describes a piecewise-linear (chordal) approximation
to the true curve. Aswell as containing the ordered array of hvecs defining this
approximation, it contains extrainformation pertaining to the accuracy of the
approximation:

struct CHART _s /I Chart
{
double Base_parameter; 11 $f
double Base scale; 1 $f
int Chart_count; /1 $d
double Chordal_error; 11 $f
double Angular_error; 1 $f
double Parameter_error[2]; 11 $f[2]
hvec Hvec[1]; 11'$h[]
1

where

o base parameter isthe parameter of the first hvec in the chart
e base scae determines the scale of the parameterisation (see below)
e chart_count isthe length of the hvec array

e chordal_error is an estimate of the maximum deviation of the curve from the
piecewise-linear approximation given by the hvec array. It may be null.

e angular_error is the maximum angle between the tangents of two sequential hvecs. It
may be null.

-42-

Parasolid XT Format

o parameter_error[] isaways[null, null].
o hvec[] isthe ordered array of hvecs.

The limits of the intersection curve are stored in the following data structure:

struct LIMIT_s /l Limit
{
char type; 1l $c
hvec hvec[11]; 1/ $h[]
b

The ‘type’ field may take one of the following values
const char SCH_help ="'H" I/l help hvec
const char SCH_terminator =T, /I terminator
const char SCH_limit ='L"% /[arbitrary limit
const char SCH_boundary ='B" /I spine boundary

The length of the hvec array depends on the type of the limit.

e aSCH_help limitisan arbitrary point on a closed intersection curve. There will be
one hvec in the hvec array, locating the curve.

e aSCH_terminator limit is a point where one of the surface normals is degenerate, or
where their cross-product is zero. Typically, there will be more than one branch of
intersection between the two surfaces at these singularities. Ther will be two values
in the hvec array. The first will be the exact position of the singularity, and the
second will be a point on the curve a small distance away from the terminator. This
‘branch point’ identifies which branch relates to the curve in question. The branch
point is the one which appearsin the chart, at the corresponding end — so the
singularity liesjust outside the parameter range of the chart.

e aSCH_limitlimitisan artificial boundary of an intersection curve on an otherwise
potentially infinite branch. The single hvec describes the end of the curve.

e aSCH_boundary limit is used to describe the end of a degenerate rolling-ball blend.
It is not relevant to intersection curves.

The parameterization of the curveis given asfollows. If the chart pointsare P, i =0ton,
with parameterst;, and natural tangent vectors T;, then define

C=|Pa—-PR]|
COS(a) = Ti . (Pi+1 - Pi)

-43-

Parasolid XT Format
cos(b) =Ti. (P —P.1)

Then at any chart point P, the angles a and b; are the deviations between the tangent at
the chart point and the next and previous chords respectively.

Let fo=base scale
fi = (cos(by) / cos(a)) fis
Then t,=base_parameter
ti=ti+Ciifia

The parameter of a point between two chart pointsis given by projecting the point onto
the tangent line at the previous chart point. The factorsf; are chosen so that the
parameterization is C,.

TRIMMED_CURVE

A trimmed curve is a bounded region of another curve, referred to asits basis curve. It is
defined by the basis curve and two points and their corresponding parameters. Trimmed
curves are most commonly attached to fins (fins) of tolerant edgesin order to specify
which portion of the underlying basis curve corresponds to the tolerant edge. They are
necessary since the tolerant vertices of the edge do not necessarily lie exactly on the basis
curve; the ‘point’ fields of the trimmed curve lie exactly on the basis curve, and within
tolerance of the relevant vertex.

The rules governing the parameter fields and points are:

e point_1 and point_2 correspond to parm_1 and parm_2 respectively.

o If the basis curve has positive sense, parm_2 > parm_1.

o If the basis curve has negative sense, parm_2 < parm_1.

In addition,

For open basis curves.

e Both parm_1 and parm_2 must be in the parameter range of the basis curve.
e point_1 and point_2 must not be equal.

For periodic basis curves

o parm_1 must liein the base range of the basis curve.

o If thewhole basis curveisrequired then parm_1 and parm_2 should be a period apart
and point_1 = point_2. Equality of parm_1 and parm_2 is not permitted.

e parm_1 and parm_2 must not be more than a period apart.

-44 -

Parasolid XT Format

For closed but non-periodic basis curves
e Both parm_1 and parm_2 must be in the parameter range of the basis curve.

e |f thewhole of the basis curveisrequired, parm_1 and parm_2 must lie close enough
to each end of the valid parameter range in order that point_1 and point_2 are
coincident to Parasolid tolerance (1.0e-8 by default).

The sense of atrimmed curve is positive.

Field name Datatype Description
basis_curve pointer Basis curve

point_1 vector start of trimmed portion

point_2 vector end of trimmed portion

parm_1 double parameter on basis curve corresponding to point_1

parm_2 double parameter on basis curve corresponding to point_2

struct TRIMMED_CURVE_s==ANY_CURVE_s // Trimmed Curve

{
int node id; /1 $d
union ATTRIB_GROUP_u attributes_groups, I1'$p
union CURVE_OWNER u owner; Il $p
union CURVE u next; Il $p
union CURVE_u previous; I1'$p
struct GEOMETRIC_OWNER_s *geometric_owner; Il $p
char sense; Il $c
union CURVE u basis curve; Il $p
vector point_1; Il $v
vector point_2; Il $v
double parm_1; I $f
double parm 2; 11 $f
b

typedef struct TRIMMED_CURVE_s *TRIMMED_CURVE;

-45-

Parasolid XT Format

PE_CURVE (Foreign Geometry curve)

Foreign geometry in Parasolid is atype used for representing customers’ in-house
proprietary data. It is also known as PE (parametrically evaluated) geometry. It can also
be used internally for representing geometry connected with this data (for example,
offsets of foreign surfaces). These two types of foreign geometry usage are referred to as
‘external’ and ‘internal’ PE data respectively. Internal PE curves are not used at present.

Applications not using foreign geometry will never encounter either external or internal PE data
structures at Parasolid V9 or beyond.

Field name Datatype Description
type char whether internal or external
data pointer internal or external data
tf pointer0 transform applied to geometry

internal geom | pointer array reference to other related geometry
union PE_DATA u // PE_data u

{

struct EXT_PE _DATA s *external; Il $p

struct INT_PE_DATA_s *internal; I1'$p

b

typedef union PE_ DATA _u PE DATA;
The PE internal geometry union defined below is used by internal foreign geometry only.
union PE_INT_GEOM _u

{

union SURFACE _u surface; Il $p
union CURVE_u Curve; II'$p
b

typedef union PE_INT_GEOM_u PE_INT_GEOM;

struct PE_CURVE_s== ANY_CURVE_s /I PE_curve

-46 -

Parasolid XT Format

{

int node id; /1 $d
union ATTRIB_GROUP_u attributes_groups; 11'$p
union CURVE_OWNER u owner; Il $p
union CURVE_ u next; Il $p
union CURVE_u previous; I1'$p
struct *geometric_owner; Il $p
GEOMETRIC_OWNER s

char sense; Il '$c
char type; 11'$c
union PE_DATA u data; Il $p
struct TRANSFORM _s *tf; I1'$p
union PE_INT_GEOM_u internal_geom[1]; 11'$p[]
¥

typedef struct PE CURVE s *PE_CURVE;

The type of the foreign geometry (whether internal or external) isidentified in the PE
curve node by means of the char ‘type’ field, taking one of the values

const char SCH_external ='E;, I/ external PE geometry
const char SCH_interna ="I'; Il internal PE geometry

The PE_data union is used in a PE curve or surface node to identify the internal or
external evaluator corresponding to the geometry, and also holds an array of real and/or
integer parametersto be passed to the evaluator. The data stored corresponds exactly to
that passed to the PK routine PK_FSURF _create when the geometry is created.

struct EXT_PE _DATA_s I/l ext_PE_data
{
struct KEY_s *Kkey; Il $p
struct REAL_VALUES s *rea_array; Il $p
struct INT_VALUES s *int_array; I1'$p

-47 -

Parasolid XT Format

h
typedef struct EXT_PE_DATA_s*EXT_PE DATA;

struct INT_PE_DATA_s /l'int_PE_data
{
int geom_type; /11'$d
struct REAL_VALUES s *rea_array; Il $p
struct INT_VALUES s *int_array; Il $p
b

typedef struct INT_PE_DATA_s*INT_PE_DATA;

Theonly internal petypein use at the moment is the offset PE surface, for which the
geom _typeis 2.

SP_CURVE
An SP curveisthe 3D curve resulting from embedding a 2D curve in the parameter space
of asurface.

The 2D curve must be a2D BCURVE; that isit must either be arational B curve with a
vertex dimensionality of 3, or anon-rational B curve with a vertex dimensionality of 2.

Field name Datatype Description
surface pointer surface
b_curve pointer 2D Bcurve
original pointer0 not used
tolerance _to_original double not used
struct SP_ CURVE s==ANY_CURVE s /I SP curve
{
int node id; /1 $d
union ATTRIB_GROUP u attributes_groups; Il $p
union CURVE_OWNER _u owner; I1'$p

-48-

union CURVE u
union CURVE u
struct

GEOMETRIC_OWNER s

char

union SURFACE u
struct B_CURVE s

union CURVE u
double

h

Parasolid XT Format

next; Il $p
previous, 11'$p
* geometric_owner; 1 $p
sense; Il $c
surface; Il $p
*b_curve; Il $p
original; Il $p
tolerance_to_original; 11 $f

typedef struct SP_ CURVE s *SP_CURVE;

Surfaces

All surface nodes share the following common fields:

Field name Data type Description
node _id int Integer value unique to surfacein part
attributes_groups pointer0 Attributes and groups associated with surface
owner pointer topological owner
next pointer0 next surface in geometry chain
previous pointer0 previous surface in geometry chain
geometric_owner pointer0 geometric owner node
sense char sense of surface: ‘+' or ‘-’ (see end of Geometry
section)
struct ANY_SURF_s /I Any Surface
{
int node id; I/ $d
union ATTRIB_GROUP_u attributes_groups, 11'$p
union SURFACE_OWNER _u owner; I1'$p

-49-

Parasolid XT Format

union SURFACE u next; Il $p
union SURFACE_u previous; I1'$p
struct *geometric_owner; I1'$p
GEOMETRIC_OWNER s

char sense; Il '$c
b

typedef struct ANY_SURF s *ANY_SURF;

PLANE
A plane has a parametric representation of the form

R(u,v)=P+uX +vY
where

e Pisapoint onthe plan

e XandY areaxesin theplane.

Field name Datatype Description
pvec vector point on the plane
normal vector normal to the plane (a unit vector)
X_axis vector X axis of the plane (a unit vector)

-850 -

Parasolid XT Format

TheY axisin the definition above is the vector cross product of the normal and x_axis.

struct PLANE_s==ANY_SURF s // Plane
{
int node id; I/ $d
union ATTRIB_GROUP_u attributes_groups, I1'$p
union SURFACE_OWNER u owner; Il $p
union SURFACE _u next; Il $p
union SURFACE_u previous, I1'$p
struct * geometric_owner; I1'$p
GEOMETRIC_OWNER s
char sense; Il '$c
vector PVEC; Il $v
vector normal; Il $v
vector X_axis, Il $v
|3

typedef struct PLANE_s *PLANE;

CYLINDER
A cylinder has a parametric representation of the form:

R(u,v) = P+ rXcos(u) + rYsin(u) + vA
where

AN
|

Riu,v)=PF +rXcos{) +I¥smi 1) + v

Parasolid XT Format

e Pisapoint on the cylinder axis

e risthecylinder radius

e Aisthecylinder axis

e X andY areunit vectorssuch that A, X and Y form an orthonormal set

Field name Datatype Description
pvec vector point on the cylinder axis
axis vector direction of the cylinder axis (a unit vector)
radius double radius of cylinder
X_axis vector X axis of the cylinder (a unit vector)

TheY axisin the definition above is the vector cross product of the axis and x_axis.

struct CYLINDER s==ANY_SURF s

{

int

union ATTRIB_GROUP u
union SURFACE_OWNER _u

union SURFAC
union SURFAC

struct GEOMETRIC_OWNER_s

char
vector
vector
double

vector

h

E u
E u

node id;

/I Cylinder

attributes_groups;

owner;
next;

previous,

*geometric_owner;

sense;
pvec;
axis;
radius,

X_axis;

typedef struct CYLINDER_s *CYLINDER,;

-52 -

11'$d
11'$p
I1'$p
I1'$p
I1'$p
11'$p
I1'$c
I $v
I $v
11 $f
Il $v

Parasolid XT Format

CONE

A conein Parasolid is only half of a mathematical cone. By convention, the cone axis
points away from the half of the conein use. A cone has a parametric representation of
the form:

R(u,v)=P-vA+(Xcos(u)+Ysin(u))(r+vtan(a))
where

e Pisapoint on the cone axis

e ristheconeradius at the point P

e Aistheconeaxis

e X and areunit vectors such that A, X and Y form an orthonormal set,i.e. Y = A X
X.

e aisthe conehalf angle.

Field name Datatype Description
pvec vector point on the cone axis
axis vector direction of the cone axis (a unit vector)
radius double radius of the cone at its pvec
sin_haf _angle double sine of the cone’s half angle
cos_half_angle double cosine of the cone’s half angle
X_axis vector X axis of the cone (a unit vector)

-53-

Parasolid XT Format

TheY axisin the definition above is the vector cross product of the axis and x_axis.

struct CONE_s== ANY_SURF s
{
int
union ATTRIB_GROUP_u
union SURFACE_OWNER _u
union SURFACE _u
union SURFACE u

struct
GEOMETRIC_OWNER s

char

vector
vector
double
double
double
vector
|3

typedef struct CONE_s *CONE;

SPHERE

/I Cone

node id;
attributes_groups;
owner;

next;

previous,

*geometric_owner;

sense;
PVEC;

axis,;

radius,
sin_half_angle;
cos_half_angle;

X_axis;

A sphere has a parametric representation of the form:

R(u,v)=C+(Xcos(u)+Ysn(u))rcos(v)+rAsin(v)

where

o Ciscentreof the sphere

11'$d
11'$p
11 $p
11'$p
I1'$p
11'$p

I1'$c
I $v
II'$v
11 $f
11 $f
11 $f
II'$v

o risthe sphereradius

Parasolid XT Format

e A, X andY form an orthonormal axis set.

Field name Datatype Description
centre vector centre of the sphere
radius double radius of the sphere
axis vector A axis of the sphere (a unit vector)
X_axis vector X axis of the sphere (a unit vector)

TheY axis of the sphereisthe vector cross product of its A and X axes.

struct SPHERE_s== ANY_SURF s

{

int

union ATTRIB_GROUP_u
union SURFACE_OWNER _u

union SURFACE _u
union SURFACE u

struct

GEOMETRIC_OWNER s

char

Il Sphere
node id; I1'$d
attributes_groups, 11'$p
owner; Il $p
next; Il $p
previous; Il $p
* geometric_owner; 11'$p
sense; Il $c

-55-

Parasolid XT Format

vector centre; Il $v
double radius; 1l $f
vector axis; I1'$v
vector X_axis, Il $v
¥

typedef struct SPHERE_s * SPHERE;

TORUS
A torus has a parametric representation of the form

R(u,v)=C+(Xcos(u)+Ysn())(a+bcosv))+bAsn(v)
where

o Ciscenter of thetorus

e Aisthetorusaxis

e aisthemajor radius

e Dbistheminor radius

e X andY areunit vectorssuch that A, X and Y form an orthonormal set.
In Parasolid, there are three types of torus:

Doughnut - the torus is not self-intersecting (a > b)

Apple - the outer part of a self-intersecting torus (a<=b, a> 0)
Lemon - the inner part of a self-intersecting torus (a< 0, [a] < b)

Thelimiting case a=bisalowed; it is called an ‘osculating apple’, but thereisno
‘lemon’ surface corresponding to this case.

The limiting case a= 0 cannot be represented as atorus; thisis a sphere.

Field name Datatype Description
centre vector centre of the torus
axis vector axis of the torus (a unit vector)
major_radius double major radius
minor_radius double minor radius

-56 -

Parasolid XT Format

X_axis vector X axis of the torus (a unit vector)

TheY axisin the definition above is the vector cross product of the axis of the torus and
the x_axis.

struct TORUS _s== ANY_SURF s /I Torus

{

int node id; I/ $d
union ATTRIB_GROUP u attributes_groups; Il $p
union SURFACE_OWNER _u owner; I1'$p
union SURFACE u next; Il $p
union SURFACE _u previous, Il $p
struct GEOMETRIC_OWNER_s *geometric_owner; I1'$p
char sense; Il $c
vector centre; Il $v
vector axis; I1'$v
double major_radius; 11 $f
double minor_radius; 1 $f
vector X_axis, Il $v
|3

typedef struct TORUS s *TORUS;

BLENDED_EDGE (Rolling Ball Blend)

Parasolid supports exact rolling ball blends. They have a parametric representation of the
form

R(u,v)=C(u)+rX(u)cos(va(u))+rY(u)sn(va(u))
where
e C(u)isthespinecurve

e ristheblend radius

-57-

Parasolid XT Format

e X(u)andY(u) areunitvectorssuchthat C'(u) . X(u)=C'(u).Y(u)=0
e a(u) isthe angle subtended by points on the boundary curves at the spine

X, Y and aare expressed as functions of u, as their values change with u.

The spine of the rolling ball blend is the center line of the blend; i.e. the path along which the
center of the ball moves.

Field name | Datatype Description
type char type of blend: ‘R’ or ‘E’
surface pointer[2] supporting surfaces (adjacent to original edge)
spine pointer spine of blend
range doubl€[2] offsetsto be applied to surfaces
thumb_weight | double[2] aways[1,1]
boundary pointer0[2] aways |0, Q]
start pointerO Start LIMIT in certain degenerate cases
end pointer0 End LIMIT in certain degenerate cases

struct BLENDED_EDGE_s==ANY_SURF_s // Blended edge
{
int node id; / $d
union ATTRIB_GROUP u attributes_groups; Il $p
union SURFACE_OWNER _u owner; I1'$p
union SURFACE_u next; II'$p

- 58 -

Parasolid XT Format

union SURFACE _u previous, Il $p
struct *geometric_owner; I1'$p
GEOMETRIC OWNER s

char sense; 1l $c
char blend_type; Il $c
union SURFACE_u surface[2]; 11 $p[2]
union CURVE u sping; Il $p
double range[2]; 11 $f[2]
double thumb_weight[2]; 11 $f[2]
union SURFACE_u boundary[2]; 11'$p[2]
struct LIMIT s *start; Il $p
struct LIMIT s *end; Il $p

|3

typedef struct BLENDED_EDGE_s*BLENDED_EDGE;

The parameterisation of the blend is as follows. The u parameter isinherited from the
spine, the constant u lines being circles perpendicular to the spine curve. The v parameter
is zero at the blend boundary on the first surface, and one on the blend boundary on the
second surface; unless the sense of the spine curve is negative, in which caseit isthe
other way round. The v parameter is proportional to the angle around the circle.

Transmit files can contain blends of the following types:
const char SCH_rolling_ball ='R’; /I rolling ball blend
const char SCH_cliff_edge ='E; /I cliff edge blend

For rolling ball blends, the spine curve will be the intersection of the two surfaces
obtained by offsetting the supporting surfaces by an amount given by the respective entry
in range]]. Note that the offsets to be applied may be positive or negative, and that the
sense of the surface is significant; i.e. the offset vector is the natural unit surface normal,
times the range, times—1 if the sense is negative.

For cliff edge blends, one of the surfaces will be ablended_edge with arange of [0,0]; its
spine will be the cliff edge curve, and its supporting surfaces will be the surfaces of the
faces adjacent to the cliff edge. Itstype will be R.

-59-

Parasolid XT Format

Thelimit fields will only be non-null if the spine curveis periodic but the edge curve
being blended has terminators — for example if the spineiselliptical but the blend
degenerates. In this case the two LIMIT nodes, of type ‘L’, determine the extent of the

spine.

BLEND_ BOUND (Blend boundary surface)

A blend_bound surface is a construction surface, used to define the boundary curve
where a blend becomes tangential to its supporting surface. It is an implicit surface
defined internally so that it intersects one of the supporting surfaces along the boundary
curve. It is orthogonal to the blend and the supporting surface along this boundary curve.
Since the actual shape of the surface is not significant for the blend geometry, it is not
described here.

Blend boundary surfaces are most commonly referenced by the intersection curve
representing the boundary curve of the blend.

The data stored in an XT file for ablend_bound is only that necessary to identify the
relevant blend and supporting surface:

-60 -

Parasolid XT Format

Field name Datatype Description
boundary short index into supporting surface array
blend pointer corresponding blend surface

struct BLEND BOUND_s==ANY_SURF s // Blend boundary

{

int node id; /1 $d
union ATTRIB_GROUP u attributes_groups; Il $p
union SURFACE_OWNER _u owner; I1'$p
union SURFACE u next; Il $p
union SURFACE _u previous, Il $p
struct *geometric_owner; Il $p
GEOMETRIC_OWNER_s

char sense; Il $c
short boundary; /I $n
union SURFACE u blend; Il $p
b

typedef struct BLEND_BOUND_s *BLEND_BOUND;
The supporting surface corresponding to the blend_bound is
blend_bound->blend.blended_edge->surface[1 - blend_bound->boundary].

OFFSET_SURF

An offset surface is the result of offsetting a surface a certain distance along its normal,
taking into account the surface sense. It inherits the parameterization of this underlying
surface.

Field name Datatype Description
check char check status
true_offset logical not used

-61-

Parasolid XT Format

surface pointer underlying surface
offset double signed offset distance
scale double for internal use only — may be set to null

struct OFFSET_SURF_s==ANY_SURF s // Offset surface

{

int

union ATTRIB_GROUP_u
union SURFACE_OWNER _u

union SURFACE_u
union SURFACE u

struct GEOMETRIC_OWNER s

char
char

logical

union SURFACE u

double
double

h

node id; /I1'$d
attributes_groups; I1'$p
OWner; Il $p
next; Il $p
previous; I1'$p
*geometric_owner; Il $p
sense; Il $c
check; Il '$c
true_offset; 19

surface; Il $p
offset; 11 $f

scale; 11 $f

typedef struct OFFSET_SURF s *OFFSET_SURF;

The offset surface is subject to the following restrictions:

e The offset distance must not be within modeller linear resolution of zero

e The sense of the offset surface must be the same as that of the underlying surface

o Offset surfaces may not share a common underlying surface

The ‘check’ field may take one of the following values:
const char SCH_valid

I valid

- 62 -

Parasolid XT Format

const char SCH_invalid ="I'; /l invalid
const char SCH_unchecked ='U'; /I has not been checked
B_SURFACE
Parasolid supports B spline curvesin full NURBS format.
Field name Datatype Description
nurbs pointer Geometric definition
data pointer0 Auxiliary information
struct B_SURFACE_s==ANY_SURF s Il B surface
{
int 11'$d
union ATTRIB_GROUP_u attributes_groups; I1'$p
union SURFACE_OWNER _u owner; I1'$p
union SURFACE _u next; Il $p
union SURFACE_u previous; I1'$p
struct GEOMETRIC_OWNER_s *geometric_owner; II'$p
char sense; Il $c
struct NURBS _SURF s *nurbs; II'$p
struct SURFACE_DATA s *data; 11'$p
b

typedef struct B SURFACE s *B_SURFACE;

The datastored in an XT filefor aNURBS surfaceis

-63-

Parasolid XT Format

Field name Datatype Description
u_periodic logical trueif surfaceis periodic in u parameter
v_periodic logical trueif surface isperiodic in v parameter
u_degree short u degree of the surface
v_degree short v degree of the surface
n_u vertices int number of control vertices (‘poles’) in u direction
n_v_vertices int number of control vertices (‘poles’) in v direction
u_knot_type byte form of u knot vector —see “B curve”
v_knot_type byte form of v knot vector
n_u_knots int number of distinct u knots
n_v_knots int number of distinct v knots
rational logical trueif surfaceisrational
u_closed logical trueif surfaceisclosed inu
v_closed logical trueif surfaceisclosed inv
surface form byte shape of surface, if special
vertex_dim short dimension of control vertices
bspline_vertices pointer control vertices (poles) node
u_knot_mult pointer multiplicities of u knot vector
v_knot_mult pointer multiplicities of v knot vector
u_knots pointer u knot vector
v_knots pointer v knot vector

The surface form enum is defined below.

typedef enum
{
SCH_unset =1, /I Unknown
SCH_arbitrary = 2, /I No particular shape
SCH_planar = 3,

SCH_cylindrical = 4,
SCH_conical =5,
SCH_spherical = 6,
SCH_toroidal =7,

SCH_surf_of revolution = 8,

SCH_ruled =9,
SCH_quadric = 10,
SCH_swept =11

}

SCH_surface form _t;

struct NURBS _SURF s

{

logical

logical

short

short

int

int
SCH_knot_type t
SCH_knot_type t
int

int

logical

logical

logical
SCH_surface form t
short

/I NURBS surface

u_periodic;
v_periodic;
u_degree;
V_degree;
n_u vertices,
n_v_vertices,
u_knot_type;
v_knot_type;
n_u_knots;
n_v_knots;
rational;
u_closed;
v_closed,
surface form;

vertex_dim;

-65-

Parasolid XT Format

4l
4l
11'$n
11'$n
/1 $d
/1 $d
/1 $u
Il $u
/1 $d
/1 $d
4l
14l
4l
I1'$u
11'$n

Parasolid XT Format

struct BSPLINE_VERTICES s *bspline vertices; Il $p
struct KNOT_MULT _s *u_knot_mult; I1'$p
struct KNOT_MULT _s *v_knot_mult; I1'$p
struct KNOT_SET s *u_knots; Il $p
struct KNOT_SET s *v_knots; Il $p
1

typedef struct NURBS SURF_s*NURBS _SURF;

The ‘bspline_vertices', ‘knot_set’ and ‘knot_mult’ nodes and the ‘knot_type enum are
described in the documentation for BCURVE.

The ‘surface data’ field in a B surface node is a structure designed to hold auxiliary or
‘derived’ data about the surface: it is not a necessary part of the definition of the B
surface. It may be null, or the majority of itsindividual fields may be null. It is
recommended that it only be set by Parasolid.

struct SURFACE_DATA_s Il auxiliary surface data

{

interval origina_uint; 11 $i
interval original_vint; IS
interval extended_uint; 1l $i
interval extended _vint; 1l $i
SCH_sdlf int_t self_int; Il $u
char origina_u_start; Il $c
char original_u_end; Il $c
char origina_v_start; Il $c
char origina_v_end; 1l $c
char extended u_start; Il $c
char extended u_end; Il $c
char extended v_start; Il $c
char extended v_end; Il $c
char analytic_form_type; Il $c

- 66 -

Parasolid XT Format

char swept_form_type; Il $c
char spun_form_type; Il $c
char blend_form_type; Il $c
void *analytic_form; Il $p
void *swept_form; Il $p
void *spun_form; 11'$p
void *blend_form; Il $p
¥

typedef struct SURFACE_DATA_s*SURFACE_DATA,

The‘origina_’ and ‘extended ' parameter intervals and corresponding character fields
original_u_start etc. are all connected with Parasolid’ s ability to extend B surfaces when
necessary — functionality which is commonly exploited in “local operation” algorithms
for example. Thisis done automatically without the need for user intervention.

In cases where the required extension can be performed by adding rows or columns of
control points, then the nurbs data will be modified accordingly —thisisreferred to as an
‘explicit’ extension. In some rational B surface cases, explicit extension is not possible -
in these cases, the surface will be ‘implicitly’ extended. When a B surface isimplicitly
extended, the nurbs data is not changed, but it will be treated as being larger by allowing
out-of-range eval uations on the surface. Whenever an explicit or implicit extension takes
place, it is reflected in the following fields:

e ‘“origina_u int” and “origina_v_int" arethe original valid parameter ranges for aB
surface before it was extended

e ‘“extended_u_int” and “extended v_int” arethe valid parameter rangesfor aB
surface once it has been extended.

The character fields ‘original_u_start’ etc. all refer to the status of the corresponding
parameter boundary of the surface before or after an extension has taken place. For B
surfaces, the character can have one of the following values:

const char SCH_degenerate = 'D’; // Degenerate edge

const char SCH_periodic ='P; /I Periodic parameterisation
const char SCH_bounded ='B’; // Parameterisation bounded
const char SCH_closed ='C;; I/ Closed, but not periodic

-67-

Parasolid XT Format

The separate fields original_u_start and extended u_start etc. are necessary because an
extension may cause the corresponding parameter boundary to become degenerate.

If the surface_data node is present, then the original_u_int, original_v_int,
original_u_start, original_u_end, original_v_start and original_v_end fields should be set
to their appropriate values. If the surface has not been extended, the extended u_int and
extended v _int fields should contain null, and the extended u_start etc. fields should
contain

const char SCH_unset_char ='?; // generic uninvestigated value

As soon as any parameter boundary of the surface is extended, all the fields should be set,
regardless of whether the corresponding boundary has been affected by the extension.

The SCH_sdf int_t enumis documented in the corresponding curve data structure under
B curve.

The ‘swept_form_type’, ‘spun_form_type’ and ‘blend_form_type' characters and the
corresponding pointers swept_form, spun_form and blend_form, are for future use and
are not implemented in Parasolid V12.0. The character fields should be set to
SCH_unset_char (*?') and the pointers should be set to null pointer.

If the analytic_form field is not null, it will point to aHELIX_SU_FORM node, which
indicates that the surface has a helical shape. In this case the analytic_form_type field
will besetto ‘H'.

struct HELIX_SU_FORM _s

{

vector axis_pt II'$v
vector axis_dir Il $v
char hand Il $c
interval turns I $i

double pitch 11 $f
double gap 11 $f
double tol 11 $f
|3

typedef struct HELIX_SU_FORM_s*HELIX_SU_FORM:;

The axis pt and axis_dir fields define the axis of the helix. The hand fieldis‘+’ for a
right-handed and ‘-’ for aleft-handed helix. The turns field gives the extent of the helix
relative to the profile curve which was used to generate the surface. For instance, an
interval [0 10] indicates a start position at the profile curve and an end 10 turns along the

- 68 -

Parasolid XT Format

axis. Pitch is the distance travelled along the axisin one turn. Tol isthe accuracy to
which the owning bsurface fits this specification. Gap is for future expansion and will
currently be zero. The v parameter increases in the direction of the axis.

SWEPT_SURF

A swept surface has a parametric representation of the form:
R(u,v)=C(u)+vD

where

e C(u) isthe section curve.

e D isthe sweep direction (unit vector).

€l

e C must not be an intersection curve or atrimmed curve.

Field name Datatype Description
section pointer section curve
sweep vector sweep direction (a unit vector)
scale double for internal use only — may be set to null
struct SWEPT_SURF_s==ANY_SURF _s I/l Swept surface
{
int node id; /1l $d
union ATTRIB_GROUP u attributes_groups; Il $p
union SURFACE_OWNER _u owner; I1'$p

-69 -

Parasolid XT Format

union SURFACE u next; Il $p
union SURFACE_u previous, I1'$p
struct *geometric_owner; I1'$p
GEOMETRIC_OWNER s

char sense; Il '$c
union CURVE_u section; II'$p
vector sweep; Il $v
double scale; 11 $f
b

typedef struct SWEPT_SURF_s*SWEPT_SURF;

SPUN_SURF
A spun surface has a parametric representation of the form:

R(u,v)=2Z(u)+(C(u)-Z(u))cos(v)+A X (C(u)-2Z(u))sin(v)

where

R{u,v)

()

€iu)

C(u) isthe profile curve
Z(u) isthe projection of C(u) onto the spin axis
A isthe spin axis direction (unit vector)

C must not be an intersection curve or a trimmed curve

NOTE: Z(u) =P+ ((C(u)-P).A)A where Pisareference point on the axis.

-70 -

Parasolid XT Format

Field name Datatype Description
profile pointer profile curve
base vector point on spin axis
axis vector spin axis direction (a unit vector)
start vector position of degeneracy at low u (may be null)
end vector position of degeneracy at low v (may be null)
start_param double curve parameter at low u degeneracy (may be null)
end_param double curve parameter at high u degeneracy (may be null)
X_axis vector unit vector in profile plane if common with spin axis
scale double for internal use only —may be set to null
struct SPUN_SURF_s==ANY_SURF s Il Spun surface
{
int node id; /1l $d
union ATTRIB_GROUP u attributes_groups; Il $p
union SURFACE_OWNER _u owner; I1'$p
union SURFACE _u next; Il $p
union SURFACE _u previous, Il $p
struct *geometric_owner; I1'$p
GEOMETRIC_OWNER_s
char sense; Il $c
union CURVE_u profile; II'$p
vector base; II'$v
vector axis; Il $v
vector start; Il $v
vector end; I1'$v
double start_param; 1 $f
double end_param; 1 $f

-71-

Parasolid XT Format

vector X_axis, Il $v
double scale; 11 $f
|3

typedef struct SPUN_SURF _s*SPUN_SURF;

The‘start’ and ‘end’ vectors correspond to physical degeneracies on the spun surface
caused by the profile curve crossing the spin axis at that point. The values start_param
and end_param are the corresponding parameters on the curve. These parameter values
define the valid range for the u parameter of the surface. If either valueis null, then the
valid range for uisinfinitein that direction. For example, for a straight line profile curve
intersecting the spin axis at the parameter t=1, values of null for start_param and 1 for
end_param would define a cone with u parameterisation (-infinity, 1].

If the profile curve liesin a plane containing the spin axis, then x_axis must be set to a
vector perpendicular to the spin axis and in the plane of the profile, pointing from the
spin axis to a point on the profile curve in the valid range. If the profile curveis not
planar, or its plane does not contain the spin axis, then x_axis should be set to null.

PE_SURF (Foreign Geometry surface)

Foreign (or ‘PE’) geometry in Parasolid is atype used for representing customers’ in-
house proprietary data. It can aso be used internally for representing geometry connected
with this data (for example, offset foreign surfaces). These two types of foreign geometry
usage are referred to as ‘external’ and ‘internal’ respectively. The only internal PE
surface is the offset PE surface.

Applications not using foreign geometry will never encounter either external or internal
PE data structures at Parasolid V9 or beyond.

Field name Datatype Description
type char whether internal or external
data pointer internal or external data
tf pointer0 transform applied to geometry
internal geom pointer array reference to other related geometry

-72 -

struct PE_ SURF_s==ANY_SURF s

{

int

union ATTRIB_GROUP u

union SURFACE_OWNER _u

union SURFACE u
union SURFACE _u

struct GEOMETRIC_OWNER s

char
char

union PE_DATA u
struct TRANSFORM _s
union PE_INT_GEOM u

h

typedef struct PE_ SURF_s *PE_SUREF;

Parasolid XT Format

/I PE_surface

node id;
attributes_groups;
owner;

next;

previous,
*geometric_owner;
sense;

type;

data;

*tf:

internal_geom[1];

The PE_DATA and PE_INT_GEOM unions are defined under ‘ PE curve'.

/I1'$d
11'$p
11 $p
I1'$p
I1'$p
I1'$p
I1'$c
11'$c
11'$p
I1'$p
11'$pl]

Point
Field name Datatype Description
node id int integer unique within part
attributes_groups pointer0 attributes and groups associated with point
owner pointer Owner
next pointerO next point in chain
previous pointer0 previous point in chain
pvec vector position of point

union POINT_OWNER _u

{

-73-

Parasolid XT Format

struct VERTEX _s *vertex;
struct BODY _s *body;
struct ASSEMBLY _s *assembly;
struct WORLD _s *world;
b
struct POINT_s // Point
{
int node id; /1'$d
union ATTRIB_GROUP_u attributes_groups, I1'$p
union POINT_OWNER u owner; Il $p
struct POINT _s *next; I1'$p
struct POINT _s *previous; I1'$p
vector pVec; Il $v
|3
typedef struct POINT_s *POINT,;
Transform
Field name Datatype Description
node id int integer unique within part
owner pointer owning instance or world
next pointer0 next transform in chain
previous pointerO previous pointer in chain
rotation_matrix double[3][3] rotation component
trandation_vector vector tranglation component
scale double scaling factor
flag byte binary flags indicating non-trivial components
perspective_vector vector perspective vector (always null vector)

-74-

Parasolid XT Format

The transform acts as

X' = (rotation_matrix . X + trangation_vector) * scale

The ‘flag’ field contains various bit flags which identify the components of the transformation:

Flag Name Binary Value Description
translation 00001 set if trandlation vector non-zero
rotation 00010 set if rotation matrix is not the identity
scaling 00100 set if scaling component is not 1.0
reflection 01000 set if determinant of rotation matrix is negative
general affine 10000 set if the rotation_matrix is not arigid rotation

union TRANSFORM_OWNER _u

{
struct INSTANCE_s *instance;
struct WORLD _s *world;
|3

struct TRANSFORM _s /I Transformation
{
int node id; /1l $d
union owner; Il $p
TRANSFORM_OWNER u
struct TRANSFORM _s *next; Il $p
struct TRANSFORM _s *previous, Il $p
double rotation_matrix[3][3]; 11 $[9]
vector translation_vector; Il $v

-75-

Parasolid XT Format

double scale; 11 $f
unsigned flag; I1'$d
vector perspective vector; II'$v
b

typedef struct TRANSFORM_s* TRANSFORM;

Curve and Surface Senses

The ‘natural’ tangent to a curve is that in the increasing parameter direction, and the
‘natural’ normal to asurfaceisin the direction of the cross-product of dP/du and dP/dv.
For some purposes these are modified by the curve and surfaces senses, respectively —for
example in the definition of blend surfaces, offset surfaces and intersection curves.

At the PK interface, the edge/curve and face/surface sense orientations are regarded as
properties of the topology/geometry combination. In the XT format, this orientation
information resides in the curves, surfaces and faces as follows:

The edge/curve orientation is stored in the curve->sense field. The face/surface
orientation isacombination of sense flags stored in the face->sense and surface->sense
fields, so the face/surface orientation is true (i.e. the face normal is parallel to the natural
surface normal) if neither, or both, of the face and surface senses are positive.

Geometric_owner

Where geometry has dependants, the dependants point back to the referencing geometry
by means of Geometric Owner nodes. Each geometric node points to a doubly-linked ring
of Geometric Owner nodes which identify its referencing geometry. Referenced
geometry is asfollows:

Intersection: 2 surfaces

SP-curve: Surface

Trimmed curve: basis curve

Blended edge: 2 supporting surfaces, 2 blend_bound surfaces, 1 spine curve
Blend bound: blend surface

Offset surface: underlying surface

Swept surface: section curve

Spun surface: profile curve

-76 -

Parasolid XT Format

Note that the 2D B-curve referenced by an SP-curve is not a dependent in this sense, and
does not need a geometric owner node.

Field name Data Description
type
owner pointer | referencing geometry
next pointer | nextin ring of geometric owners referring to the same
geometry
previous pointer | previousin abovering
shared geometry | pointer | referenced (dependent) geometry

struct GEOMETRIC_OWNER_s /I geometric owner of geometry

{

union GEOMETRY _u owner; Il $p
struct GEOMETRIC_OWNER_s *next; Il $p
struct GEOMETRIC_OWNER_s *previous, 11'$p
union GEOMETRY _u shared_geometry; Il $p

h

typedef struct GEOMETRIC_OWNER_s*GEOMETRIC_OWNER;

-77 -

Parasolid XT Format

Topology

In the following tables, ‘ignore’ means this may be set to null (zero) if an XT fileis
created outside Parasolid. For an XT file created by Parasolid, this may take any value,
but should be ignored.

Unless otherwise stated, al chains of nodes are doubly-linked and null-terminated.

WORLD

Field name Type Description

assembly pointer0 | Head of chain of assemblies
attribute pointerO | Ignore

body pointerO | Head of chain of bodies

transform pointerO | Head of chain of transforms

surface pointerO | Head of chain of surfaces

curve pointerO | Head of chain of curves

point pointer0 | Head of chain of points

aive logical True unless partition is at initial pmark
attrib_def pointerO | Head of chain of attribute definitions
highest_id int Highest pmark id in partition
current_id int Id of current pmark

The World node is only used when a partition is transmitted. Because some of the
attribute definitions may be referenced by nodes which have been deleted, but which may
reappear on rollback, the attribute definitions are chained off the World node rather than
simply being referenced by attributes.

struct WORLD_s /I World
{
struct ASSEMBLY _s *assembly; I1'$p
struct ATTRIBUTE s * attribute; Il $p
struct BODY _s *body; Il'$p
struct TRANSFORM _s *transform; Il $p

-78 -

Parasolid XT Format

union SURFACE_u surface; Il $p
union CURVE_u CUrve; II'$p
struct POINT _s *point; 11'$p
logical aive; I1'$l
struct ATTRIB_DEF s *attrib_def; Il $p
int highest_id; 11'$d
int current_id; //'$d
¥
typedef struct WORLD_s *WORLD;
ASSEMBLY

highest node id | int Highest node-id in assembly

attributes groups | pointerO | Head of chain of attributes of, and groupsin, assembly

attribute_chains pointerO | List of attributes, one for each attribute definition used

in the assembly

list pointerO | Null

surface pointer0 | Head of construction surface chain

curve pointer0 | Head of construction curve chain

point pointer0 | Head of construction point chain

key pointer0 | Ignore

res size double Value of ‘size box’ when transmitted (normally 1000)

res linear double Value of modeller linear precision when transmitted

(normally 1.0e-8).

ref_instance pointer0 | Head of chain of instances referencing this assembly

next pointerO | Ignore

previous pointerO | Ignore

state byte Settol.

owner pointer0 | Ignore

type byte Always 1.

sub_instance pointer0 | Head of chain of instancesin assembly

The value of the ‘state’ field should be ignored, as should any nodes of type ‘KEY’
referenced by the assembly. If an XT file is constructed outside Parasolid, the state field
should be set to 1, and the key to null.

-79-

Parasolid XT Format

The highest_node _id gives the highest node-id of any node in the assembly. Certain
nodes within the assembly (namely instances, transforms, geometry, attributes and
groups) have unique node-ids which are non-zero integers.

typedef enum
{
SCH_collective_assembly =1,
SCH_conjunctive_assembly = 2,
SCH_disjunctive_assembly = 3
}
SCH_assembly_type;

typedef enum
{
SCH new part =1,
SCH_stored_part =2,
SCH_modified_part =3,
SCH_anonymous_part = 4,
SCH_unloaded part =5

}
SCH_part_state;
struct ASSEMBLY _s /I Assembly

{

int highest_node id; Il $d
union ATTRIB_GROUP_u attributes_groups; Il $p
struct LIST s *attribute_chains; Il $p
struct LIST s *list; Il $p
union SURFACE_u surface; I $p

-80-

Parasolid XT Format

union CURVE _u CUrve; Il $p
struct POINT_s *point; I $p
struct KEY_s *key; I $p
double res size, Il $f
double res linear; Il $f
struct INSTANCE _s *ref_instance; Il $p
struct ASSEMBLY _s *next; Il $p
struct ASSEMBLY _s *previous, Il $p
SCH_part_state state; Il $u
struct WORLD _s *owner; Il $p
SCH_assembly_type type; I $u
struct INSTANCE_s *sub_instance; Il $p
b

typedef struct ASSEMBLY _s*ASSEMBLY;

struct KEY _s Il Key
{
string[1]; char 11'$c]]
b

typedef struct KEY_s*KEY;

INSTANCE

Field name Type Description

node id int Node-id

attributes groups | pointer0 | Head of chain of attributes of instance and
member_of groups of instance

type byte Always 1

part pointer Part referenced by instance
transform pointer0 | Transform of instance
assembly poi nter Assembly in which instance lies
next_in_part pointerO | Next instance in assembly
prev_in_part pointer0 | Previousinstance in assembly

-81-

Parasolid XT Format

next_of part pointerQ | Next instance of instance->part
prev_of part pointerQ | Previousinstance of instance->part
typedef enum

{

SCH_positive _instance =1,
SCH_negative_instance = 2

}

SCH_instance _type;

union PART _u

{
struct BODY _s

struct ASSEMBLY _s

h

*body;
*assembly;

typedef union PART u PART;

struct INSTANCE s
{

int

union ATTRIB_GROUP_u

SCH_instance type

union PART _u

struct TRANSFORM _s
struct ASSEMBLY _s
struct INSTANCE s
struct INSTANCE s
struct INSTANCE s
struct INSTANCE s

/I Instance

node id;
attributes_groups;
type;

part;

*transform;
*assembly;
*next_in_part;
*prev_in_part;
*next_of_part;
*prev_of part;

-82-

/Il $d
Il $p
Il $u
I $p
I $p
I $p
I $p
I $p
I $p
I $p

Parasolid XT Format

b

typedef struct INSTANCE_s*INSTANCE;

BODY

Field name Type Description

highest hode id | int Highest node-id in body

attributes groups | pointer0 | Head of chain of attributes of, and groups in, body

attribute_chains pointerO | List of attributes, one for each attribute definition used in
the body

surface pointerO | Head of construction surface chain

curve pointer0 | Head of construction curve chain

point pointerO | Head of construction point chain

key pointerO | Ignore

res size double | Valueof ‘size box’ when transmitted (normally 1000)

res linear double | Value of modeller linear precision when transmitted
(normally 1.0e-8)

ref_instance pointerO | Head of chain of instances referencing this part

next pointerO | Ignore

previous pointerO | Ignore

state byte Set to 1 (see below)

owner pointerO | Ignore

body_type byte Body type

nom_geom state | byte Set to 1 (for future use)

shell pointerO | For general bodies: null
For solid bodies: the first shell in one of the solid regions
For other bodies: the first shell in one of the regions
Thisfield is obsolete, and should be ignored by
applications reading XT files. When writing XT files, it
must be set as above.

boundary_surface | pointerO | Head of chain of surfaces attached directly or indirectly
to faces or edges or fins

boundary_curve | pointerO | Head of chain of curves attached directly or indirectly to
edges or faces or fins

boundary point | pointerO | Head of chain of points attached to vertices

region pointer | Head of chain of regionsin body; thisisthe infinite
region

edge pointer0 | Head of chain of all non-wireframe edges in body

vertex pointerO | Head of chain of al verticesin body

-83-

Parasolid XT Format

The value of the ‘state’ field should be ignored, as should any nodes of type ‘KEY’
referenced by the body. If an XT fileis constructed outside Parasolid, the state field

should be set to 1, and the key to null.

The highest_node _id gives the highest node of any node in this body. Most nodesin a
body which arevisible at the PK interface have node-ids, which are non-zero integers

unique to that node within the body. Applications writing XT files must ensure that node-

ids are present and distinct. The details of which nodes have node ids are given in an

appendix.

typedef enum

{

SCH_solid body =1,
SCH_wire body =2,
SCH_sheet_body =3,
SCH_general_body =6
}

SCH_body _type;

struct BODY _s
{
int
union ATTRIB_GROUP_u
struct LIST s
union SURFACE u
union CURVE u
struct POINT _s
struct KEY _s
double
double
struct INSTANCE s

/I Body

highest_node _id;
attributes_groups;
*attribute_chains;
surface;

Curve,

*point;
*key;

res size;

res linear;

*ref_instance;

-84-

/Il $d
Il $p
I $p
I $p
Il $p
I $p
I $p
Il $f
Il $f
I $p

struct BODY _s
struct BODY _s
SCH_part_state
struct WORLD _s
SCH_body_type
struct SHELL _s
union SURFACE_u
union CURVE u
struct POINT _s
struct REGION_s
struct EDGE_s
struct VERTEX_s

h

typedef struct BODY _s

*BODY;

*next;
*previous,
state;
*owner;
body_type;
*shell;

boundary_surface;

boundary_curve;
*boundary_point;
*region;
*edge;
*vertex;

-85-

Parasolid XT Format

I $p
I $p
/I $u
I $p
Il $u
I $p
I $p
I $p
I $p
Il $p
I $p
I $p

Parasolid XT Format

Attaching Geometry to Topology

The faces which reference a surface are chained together, surface->owner is the head of
this chain. Similarly the edges which reference the same curve are chained together. Fins

do not share curves.

Geometry in parts may be chained into one of the three boundary geometry chains, or one

of the three construction geometry chains. A geometric node will fall into one of the

following cases:

Geometry Owner Whether chained

Attached to face face In boundary_surface chain
Attached to edge or fin | edgeor fin In boundary_curve chain
Attached to vertex vertex In boundary point chain
Indirectly attached to body In boundary_surface chain or

face or edge or fin

boundary_curve chain

Construction geometry body or In surface, curve or point chain
assembly
2D B-curvein SP-curve | null Not chained

Here ‘indirectly attached’ means geometry which is a dependent of a dependent of (...
etc) of geometry attached to an edge, face or fin.

Geometry in a construction chain may reference geometry in a boundary chain, but not

vice-versa.

REGION

Field name Type Description

node id int Node-id

attributes_groups | pointerO | Head of chain of attributes of region and
member_of groups of region

body pointer | Body of region

next pointerO | Next region in body

prev pointerO | Previous region in body

shell pointer0 | Head of singly-linked chain of shellsin region

type char Region type —solid (‘S') or void (‘V')

- 86 -

Parasolid XT Format

struct REGION_s /I Region
{
int node id; /I $d
union ATTRIB_GROUP_u attributes_groups; Il $p
struct BODY _s *body; Il $p
struct REGION_s *next; Il $p
struct REGION_s *previous, Il $p
struct SHELL s *shell; Il $p
char type; Il $c
|3
typedef struct REGION_s *REGION;
SHELL
Field name Type Description
node id int Node-id
attributes groups | pointer0 | Head of chain of attributes of shell
body pointer0 | For shellsin wire and sheet bodies, and for shells
bounding a solid region of a solid body, thisis set to
the body of the shell. For shellsin general bodies, or
void shellsin solid bodies, it isnull.
Thisfield is obsolete, and should be ignored by
applicationsreading XT files. When writing XT files, it
must be set as above.
next pointerO | Next shell inregion
face pointerO | Head of chain of back-faces of shell (i.e. faceswith
face normal pointing out of region of shell).
edge pointer0 | Head of chain of wire-frame edges of shell
vertex pointerO | If shell consists of asingle vertex, thisisit; else null
region pointer Region of shell
front_face pointer0 | Head of chain of front-faces of shell (i.e. faces with
face normal pointing into region of shell)

struct SHELL s

Il Shell

-87-

Parasolid XT Format

{
int node id; Il $d
union ATTRIB_GROUP_u attributes_groups; Il $p
struct BODY _s *body; Il $p
struct SHELL s *next; Il $p
struct FACE_s *face; Il $p
struct EDGE_s *edge; Il $p
struct VERTEX_s *vertex; Il $p
struct REGION_s *region; I $p
struct FACE_s *front_face; Il $p
b

typedef struct SHELL s *SHELL;

FACE

Field name Type Description

node id int Node-id

attributes_groups pointer0 Head of chain of attributes of face and

member_of groups of face

tolerance double Not used (null double)

next pointer0 Next back-face in shell

previous pointerO Previous back-facein shell

loop pointer0 Head of singly-linked chain of loops

shell pointer Shell of which thisis aback-face

surface pointer0 Surface of face

sense char Face sense — positive (‘+') or negative (‘-')

next_on_surface pointer0 Next in chain of faces sharing the surface of thisface

previous_on_surface | pointerO Previousin chain of faces sharing the surface of this

face

next_front pointer0 Next front-face in shell

previous front pointer0 Previous front-face in shell

front_shell pointer Shell of which thisis afront-face

- 88 -

Parasolid XT Format

struct FACE_s Il Face
{
int node id; /I $d
union ATTRIB_GROUP u attributes_groups; Il $p
double tolerance; Il $f
struct FACE_s *next; Il $p
struct FACE_s *previous, Il $p
struct LOOP_s *|oop; Il $p
struct SHELL _s *shell; I $p
union SURFACE_u surface; Il $p
char sense; Il $c
struct FACE_s *next_on_surface; Il $p
struct FACE_s *previous_on_surface; Il $p
struct FACE_s *next_front; Il $p
struct FACE_s *previous front; Il $p
struct SHELL s *front_shell; Il $p
b
typedef struct FACE s *FACE;
LOOP
Field name Type Description
node id int Node-id
attributes groups | pointer0 | Head of chain of attributes of loop
fin pointer One of ring of fins of loop
face pointer Face of loop
next pointer0 | Next loop in face

I solated L oops

Anisolated loop (one consisting of asingle vertex) does not refer directly to a vertex, but
points to afin which refersto that vertex. Thisisolated fin has fin->forward = fin-
>backward = fin, and fin->other = fin->curve = fin->edge = null. Its senseis not
significant. The fin is chained into the chain of fins referencing the isolated vertex.

-89 -

Parasolid XT Format

struct LOOP_s /I Loop
{
int node_id; /Il $d
union ATTRIB_GROUP u attributes_groups; Il $p
struct FIN_s *fin; Il $p
struct FACE_s *face; Il $p
struct LOOP_s *next; Il $p
h

typedef struct LOOP_s *LOOP,

FIN

Field name Type Description

attributes_groups | pointerO | Head of chain of attributes of fin

loop pointerO | Loop of fin

forward pointerO | Next fin around loop

backward pointerO | Previousfin around loop

vertex pointer0 | Forward vertex of fin

other pointerO | Next fin around edge, clockwise looking along edge

edge pointerO | Edge of fin

curve pointer0 | For anon-dummy fin of atolerant edge, thiswill bea

trimmed SP-curve, otherwise null.
next_at_vx pointerO | Next fin referencing the vertex of thisfin
sense char Positive (‘+') if thefin direction is parallel to that of its
edge, else negative (‘-')
Dummy Fins

An application will see edges as having any number of fins, including zero. However
internally, they have at least two. Thisis so that the forward and backward vertices of an
edge can always be found as edge->fin->vertex and edge->fin->other->vertex
respectively - the first one being a positive fin, the second a negative fin. If an edge does
not have both a positive and a negative externally-visible fin, dummy finswill exist for
this purpose. Dummy fins have fin->loop = fin->forward = fin->backward = fin->curve =

-90-

Parasolid XT Format

fin->next_at_vx = null. For exampl e the boundaries of a sheet aways have one dummy

fin.
struct FIN_s /I Fin
{
union ATTRIB_GROUP u attributes_groups; Il $p
struct LOOP_s *loop; Il $p
struct FIN_s *forward; Il $p
struct FIN_s *backward,; Il $p
struct VERTEX _s *vertex; Il $p
struct FIN_s *other; Il $p
struct EDGE_s *edge; Il $p
union CURVE u Curve; Il $p
struct FIN_s *next_at_vx; Il $p
char sense; Il $c
¥
typedef struct FIN_s*FIN;
VERTEX
Field name Type Description
node id int Node-id
attributes_groups | pointerO | Head of chain of attributes of vertex and
member_of groups of vertex
fin pointerO | Head of singly-linked chain of fins referencing this
vertex
previous pointerQ | Previous vertex in body
next pointerO | Next vertex in body
point pointer Point of vertex
tolerance double Tolerance of vertex (null-double for accurate vertex)
owner pointer Owning body (for non-acorn vertices) or shell (for

acorn vertices)

-01-

Parasolid XT Format

union SHELL_OR_BODY _u

(

struct BODY _s
struct SHELL s

h

*body;
*shell;

typedef union SHELL_OR BODY_u SHELL OR BODY;

struct VERTEX_s Il Vertex
{
int node id; /I $d
union ATTRIB_GROUP_u attributes_groups; Il $p
struct FIN_s *fin; Il $p
struct VERTEX _s *previous, Il $p
struct VERTEX_s *next; Il $p
struct POINT _s *point; Il $p
double tolerance; I $f
union SHELL _OR BODY _u owner; Il $p
b

typedef struct VERTEX_s *VERTEX;

EDGE

Field name Type Description

node id int Node-id

attributes_groups | pointerO | Head of chain of attributes of edge and

member_of_groups of edge

tolerance double Tolerance of edge (null-double for accurate edges)

fin pointer One of singly-linked ring of fins around edge

previous pointer0 | Previous edgein body or shell

next pointerO | Next edgein body or shell

-02-

Parasolid XT Format

curve pointerO | Curve of edge, zero for tolerant edge. If edgeis
accurate, but any of its vertices are tolerant, thiswill be
atrimmed curve

next_on_curve pointerO | Next in chain of edges sharing the curve of this edge

previous on cur | pointerO | Previousin chain of edges sharing the curve of this edge
ve

owner pointer Owning body (for non-wireframe edges) or shell (for
wireframe edges)

struct EDGE_s /I Edge

{

int node _id; /I $d
union ATTRIB_GROUP u attributes_groups; Il $p
double tolerance; I $f
struct FIN_s *fin; Il $p
struct EDGE_s *previous, Il $p
struct EDGE_s *next; Il $p
union CURVE_u CUrve; Il $p
struct EDGE _s; *next_on_curve Il $p
struct EDGE_s *previous_on_curve; Il $p
union owner; Il $p
SHELL_OR _BODY_u

b

typedef struct EDGE_s *EDGE;

-03-

Parasolid XT Format

Associated Data

LIST

Field name | Type Description

node id int Zero

owner pointer | Owning part

next pointerO | Ignore

previous pointerO | Ignore

list_type int Always 4

list_length int Length of list (>=0)

block length | int Length of each block of list. Always 20
Size of_entry | int Ignore

list_block pointer | Head of singly-linked chain of blocksin list

finger_block | pointer | Any block e.g. thefirst one

finger_index | int Any integer between 1 and list->list_length (set to 1 if length
iS zero)
notransmit logical Ignore

Listsonly occur in part files as the list of attributes referenced by a part.
typedef enum

{

LIS pointer =4

}
LIS type t;

union LIS BLOCK _u

{
struct POINTER_LIS BLOCK s *pointer_block;

H
typedef union LIS BLOCK_u LIS BLOCK;

-94-

union LIST_OWNER _u
{
struct BODY _s
struct ASSEMBLY _s
struct WORLD_s

h

*body;
*assembly;

*world;

typedef union LIST_OWNER_u LIST_OWNER,;

Parasolid XT Format

struct LIST_s /I List Header
{
int node _id; /I $d
union LIST_OWNER _u owner; Il $p
struct LIST s *next; Il $p
struct LIST s *previous, Il $p
LIS type t list_type; Il $d
int list_length; /I $d
int block_length; /Il $d
int size of_entry; /I $d
union LIS BLOCK _u list_block; Il $p
union LIS BLOCK _u finger_block; Il $p
int finger_index; /I $d
logical notransmit; Il $l
|3

typedef struct LIST _s*LIST;

POINTER_LIS BLOCK:

Field name Type Description

n_entries int Number of entriesin this block (0 <= n_entries <= 20). Only

the first block may have n_entries= 0.

-05-

Parasolid XT Format

next_block

pointer0

Next block in list

entrieg20]

pointerQ

Pointersin block, those beyond n_entries must be zero

When the pointer_lis_block is used as the root node in a transmit file containing more
than one part, the restriction n_entries <= 20 does not apply.

struct POINTER_LIS BLOCK s /I Pointer List
{
int n_entries, /I $d
struct POINTER LIS BLOCK s *next_block; Il $p
void *entrieq 1]; 11 $p[]
|3

typedef struct POINTER_LIS BLOCK_s*POINTER_LIS BLOCK;

ATT_DEF_ID

Field Type | Description

name

string[] char String name e.g. "SDL/TYSA_COLOUR"

struct ATT_DEF_ID_s

/I name field type for attrib def.

{
char String[1]; 11 $c[]
b

typedef struct ATT_DEF _ID_s*ATT_DEF_ID;

FIELD_NAMES

Field Type Description

name

names(] pointer Array of field names— unicode or char

-906 -

typedef union FIELD_NAME _u

{

struct CHAR_VALUES s

Parasolid XT Format

*name

struct UNICODE_VALUES s *uname

b
FIELD_NAME t;

struct FIELD_NAME _s

{
union FIELD_NAME _u

h

/I attribute field name

names{1]; 11" $p(]

typedef struct FIELD_NAME_s*FIELD_NAME;

ATTRIB_DEF

Field name Type Description

next pointerO | Next attribute definition. This can be ignored, except in
a partition transmit file.

identifier pointer | Pointer to string name

type id int Numeric id, e.g. 8001 for color. 9000 for user-defined
attribute definitions

actiong[§] byte Required actions on various events

field names pointerO | Names of fields (unicode or char)

legal_owners[14] | logical Allowed owner types

fieldd] byte Array of field types. Note that the number of fieldsis
given by the length of the variable length part of this
node, i.e. the integer following the node type in the
transmit file.

Thelegal _ownersarray is an array of logicals determining which node types may own
thistype of attribute. e.g. if faces are allowed attrib_def -> legal_owners

[SCH_fa_owner] = true.

-97-

Parasolid XT Format

Note that if the file contains user fields, the ‘fields' field of an attribute definition may
contain extra values, set to zero. These are to be ignored.

The*actions' field in an attribute definition defines the behaviour of the attribute when an
event (rotate, scale, trandlate, reflect, split, merge, transfer, change) occurs. The actions

are:

do_nothing Leave attribute asit is

delete Delete the attribute

transform Transform the transformabl e fields (point, vector, direction, axis) by
appropriate part of transformation

propagate Copy attribute onto split-off node

keep_if_equal | Keep attributeif present on both nodes being merged, with the same
field values.

combine Move attribute(s) from deleted node onto surviving node, in a merge

The PK attribute classes 1-7 correspond as follows:

split merge transfer change Rotate scale translate reflect

classl | propagate | keep_equal | do_nothing | do_nothing | do_nothing | do_nothing | do_nothing | do_nothing

class2 | delete delete delete delete do_nothing | delete do_nothing | do_nothing

class 3 delete delete delete delete Delete delete delete delete

class4 | propagate | keep_equal | do_nothing | do_nothing | Transform transform transform transform

class5 delete delete delete delete Transform transform transform transform
class6 | propagate | combine do_nothing | do_nothing | do_nothing | do_nothing | do_nothing | do_nothing
class7 | propagate | combine do_nothing | do_nothing | Transform transform transform transform

Certain attribute definitions are created by Parasolid on startup, these are documented in

an appendix.
typedef enum
{

SCH_rotate =0,
SCH scale =1,
SCH_trandate =2,
SCH_reflect =3,
SCH_split =4,

- 08 -

Parasolid XT Format
SCH_merge =5,
SCH_transfer =6,
SCH_change =7,

SCH_max_logged_event Il last entry; value in $d[] code for
actions

}
SCH_logged_event t;

typedef enum
{
SCH_do_nothing =0,
SCH_delete =1,
SCH_transform =3,
SCH_keep if equal =5,
SCH_combine =6
}

SCH_action_on_fields t;

typedef enum

{

SCH_as owner =0,
SCH_in_owner =1,
SCH_by owner =2,
SCH_sh owner =3,
SCH_fa owner =4,
SCH_lo_owner =5,
SCH_ed owner =6,
SCH_vx_owner =7,
SCH_fe owner =8,

-99-

Parasolid XT Format
SCH_sf owner =9,
SCH_cu_owner =10,
SCH_pt_owner =11,
SCH_rg _owner =12,
SCH_fn_owner =13,

SCH_max_owner Il last entry; valuein $I[] for
Jegal_owners

} SCH_attrib_owners t;

typedef enum
{
SCH_int_field =1,
SCH_real_field =2,
SCH_char_field =3,

SCH_point_field =4,
SCH_vector_field =5,
SCH_direction field =6,
SCH_axis field =7,

SCH_tag field =8,

SCH_pointer_field =9,

SCH_unicode field =10
} SCH_field_type t;

struct ATTRIB_DEF s /I attribute definition
{
struct ATTRIB_DEF s *next; Il $p
struct ATT_DEF ID_s *identifier; Il $p
int type id; Il $d
SCH_action on fields t actions Il $u[8]

AN CrLL mAanvy lAamn~naAA AAnd -

- 100 -

Parasolid XT Format

[(int)SCH_max_logged_event];

struct FIELD_NAMES s *field_names Il $p
logical legal_owners 11 $1[14]
[(int)SCH_max_owner];
SCH_field_type t fieldg[1]; 11 $ul]
b
typedef struct ATTRIB_DEF s *ATTRIB_DEF;
ATTRIBUTE
Field name Type Description
node id int Node-id
definition pointer | Attribute definition
owner pointer | Attribute owner
next pointerO | Next attribute, group, or member_of group
previous pointer0 | Previous ditto
next_of type pointerO | Next attribute of thistypein this part
previous of type | pointerO | Previous attribute of thistypein this part
fieldd] pointer | Fields, of typeint_values etc. The number of fieldsis
given by the length of the variable part of the node. There
may be no fields.

The attributes of a node are chained using the next and previous pointersin the attribute.
The attribute_groups pointer in the node points to the head of this chain. This chain also
contains the member_of _groups of the node.

Attributes within the same part, with the same attribute definition, are chained together
by the next_of type and previous of type pointers. The part points to the head of this
chain asfollows. The attribute_chains pointer in the part pointsto alist which contains
the heads of these attribute chains, one for each attribute definition which has attributesin
the part. The list may be null.

Note that the attributes_groups chainsin parts, groups and nodes contain the following
types of node:

Part: attributes and groups
Group: attributes
Node: attributes and member_of groups

-101-

Parasolid XT Format

Fields of type ‘ pointer’ can be used in Parasolid V12.0, but they are always transmitted as
empty.

union ATTRIBUTE_OWNER_u

{
struct ASSEMBLY _s *assembly;
struct INSTANCE_s *instance;
struct BODY _s *body;
struct SHELL s *shell;
struct REGION_s *region;
struct FACE_s *face;
struct LOOP_s *|oop;
struct EDGE_s *edge;
struct FIN_s *fin;
struct VERTEX _s *vertex;
union SURFACE u Surface;
union CURVE_u Curve;
struct POINT _s *point;
struct GROUP_s *group;
|3

typedef union ATTRIBUTE_OWNER_uATTRIBUTE_OWNER;

union FIELD_VALUES u

{

struct INT_VALUES s *int_values;
struct REAL_VALUES s *real_values,
struct CHAR_VALUES s *char_values;
struct POINT_VALUES s *point_values,

struct VECTOR _VALUES s *vector_values,

-102 -

Parasolid XT Format

struct DIRECTION_VALUES s *direction_values,

struct AXIS VALUES s *axis values;
struct TAG_VALUES s *tag_values;
struct UNICODE_VALUES s *unicode _values,
¥

typedef union FIELD_VALUES u FIELD_VALUES;

struct ATTRIBUTE_s /I Attribute
{
int node id; /I $d
struct ATTRIB_DEF s *definition; Il $p
union ATTRIBUTE_OWNER u owner; Il $p
union ATTRIB_GROUP_u next; Il $p
union ATTRIB_GROUP u previous, Il $p
struct ATTRIBUTE_s *next_of type; Il $p
struct ATTRIBUTE_s *previous _of type; I $p
union FIELD_VALUES u fields[1]; 11 $p[]
b

typedef struct ATTRIBUTE_s*ATTRIBUTE;

INT_VALUES

| valued[] | int | Integer values

struct INT_VALUES s /I Int values
{
int valued[1]; 11 $d[]
¥

typedef struct INT_VALUES_s*INT_VALUES;,

- 103 -

Parasolid XT Format

REAL_VALUES

| valued[] | double | Real values
struct REAL_VALUES s /I Real values
{
double valued1]; Il $f[]

b
typedef struct REAL_VALUES s*REAL_VALUES;

CHAR_VALUES

| valued[] | char | Character values
struct CHAR_VALUES s /I Character values
{
char valueq1]; Il $c[]

h
typedef struct CHAR_VALUES s*CHAR_VALUES,

UNICODE_VALUES

| valued[] | short | Unicode character values
struct UNICODE_VALUES s /I Unicode character values
{
short valueq1]; Il $w(]
h

typedef struct UNICODE_VALUES_s*UNICODE_VALUES;

-104 -

Parasolid XT Format

POINT_VALUES

| valued[] | vector | Point values
struct POINT_VALUES s /[Point values
{
vector values[1]; 11'$v[]

b
typedef struct POINT_VALUES s*POINT_VALUES;

VECTOR_VALUES

| valued[] | vector | Vector values
struct VECTOR_VALUES s /I Vector values
{
vector valued[1]; 11 $v[]

h
typedef struct VECTOR_VALUES s*VECTOR_VALUES;

DIRECTION_VALUES

| valued[] | vector | Direction values
struct DIRECTION_VALUES s /I Direction values
{
vector valued[1]; 11 $v[]

b
typedef struct DIRECTION_VALUES s*DIRECTION_VALUES;

AXIS VALUES

-105-

Parasolid XT Format

valued[] | vector

| Axisvalues

Note that an axis takes up two vectors.

struct AXIS VALUES s

/I Axisvalues

{
vector valueq[1]; 11 $v[]
b
typedef struct AXIS VALUES s*AXIS VALUES;
TAG_VALUES
| valued[] | int | Integer tag values

Thetag field type and the tag_values node are not available for use in user-defined
attributes, they occur only in certain system attributes.

struct TAG_VALUES s /I Tagvalues
{
int values[1]; I $t]
|3

typedef struct TAG_VALUES s*TAG_VALUES;

GROUP

Field name Type Description

node id int Node-id

attributes_groups | pointerO Head of chain of attributes of this group

owner pointer Owning part

next pointer0 Next group or attribute

previous pointer0 Previous group or attribute

type byte Type of node allowed in group

first_member pointerO Head of chain of member_of group nodesin group

The groups in a part are chained by the next and previous pointersin agroup. The
attributes_groups pointer in the part points to the head of the chain. This chain also

- 106 -

Parasolid XT Format

contains the attributes attached directly to the part - groups and attributes are
intermingled in this chain, the order is not significant.

Each group has a chain of member_of _groups. These are chained together using the
next_member and previous_member pointers. The first_member pointer in the group
points to the head of the chain. Each member_of group has an owning_group pointer
which points back to the group.

Each member_of _group has an owner pointer which pointsto a node. Thus the group
references its member nodes viathe member_of _groups.

The member_of_groups which refer to a particular node are chained using the next and
previous pointers in the member_of_group. The attributes_groups pointer in the node

points to the head of this chain. This chain also contains the attributes attached to the
node.

typedef enum

{

SCH_instance fe =1,
SCH_face fe =2,
SCH loop fe =3,
SCH_edge fe =4,
SCH_vertex_fe =5,
SCH_surface fe =6,
SCH_curve fe =7,
SCH_point_fe =8,
SCH_mixed fe =9,
SCH_region fe =10
} SCH_group_type t;

struct GROUP_s /I Group
{
int node id; /I $d
union ATTRIB_GROUP_ u attributes_groups; Il $p

- 107 -

Parasolid XT Format

union PART u owner; Il $p
union ATTRIB_GROUP_u next; Il $p
union ATTRIB_GROUP_u previous; I $p
SCH_group_type t type; /I $u
struct MEMBER_OF GROUP_s *first_member; Il $p
|3

typedef struct GROUP_s* GROUP,

MEMBER_OF_GROUP

Field name Type Description

dummy_node id int Zero

owning_group pointer Owning group

owner pointer Referenced member of group

next pointerQ Next attribute, group or member_of group

previous pointerQ Previous ditto

next_member pointerO Next member_of group in this group

previous member | pointerO Previous ditto

union GROUP_MEMBER u

{

struct INSTANCE_s *instance;
struct FACE_s *face;
struct REGION_s *region;
struct LOOP_s *|oop;
struct EDGE_s *edge;
struct VERTEX _s *vertex;
union SURFACE u surface;
union CURVE u Curve;
struct POINT _s *point;
b

typedef union GROUP_MEMBER_u GROUP_MEMBER,;

- 108 -

Parasolid XT Format

struct MEMBER_OF_GROUP_s /[Member of group

{

int dummy_node id; /I $d
struct GROUP_s *owning_group; Il $p
union GROUP_MEMBER u owner; I $p
union ATTRIB_GROUP_u next; Il $p
union ATTRIB_GROUP u previous, Il $p
struct MEMBER_OF _GROUP_s *next_member; Il $p
struct MEMBER_OF _GROUP_s *previous_member; Il $p
¥

typedef struct MEMBER_OF_GROUP_s*MEMBER_OF GROUP;

- 109 -

Parasolid XT Format

Node Types

Node name Node Visibleat PK Has node-id
type

ASSEMBLY 10 Yes No
INSTANCE 11 Yes Yes
BODY 12 Yes No
SHELL 13 Yes Yes
FACE 14 Yes Yes
LOOP 15 Yes Yes
EDGE 16 Yes Yes
FIN 17 Yes No
VERTEX 18 Yes Yes
REGION 19 Yes Yes
POINT 29 Yes Yes
LINE 30 Yes Yes
CIRCLE 31 Yes Yes
ELLIPSE 32 Yes Yes
INTERSECTION 38 Yes Yes
CHART 40 No
LIMIT 41 No
BSPLINE_VERTICES 45 No
PLANE 50 Yes Yes
CYLINDER 51 Yes Yes

-110-

Parasolid XT Format

CONE 52 Yes Yes
SPHERE 53 Yes Yes
TORUS 54 Yes Yes
BLENDED_EDGE 56 Yes Yes
BLEND_BOUND 59 No

OFFSET_SURF 60 Yes Yes
SWEPT_SURF 67 Yes Yes
SPUN_SURF 68 Yes Yes
LIST 70 Yes Yes
POINTER_LIS BLOCK 74 No

ATT_DEF_ID 79 No

ATTRIB_DEF 80 Yes No
ATTRIBUTE 81 Yes Yes
INT_VALUES 82 No

REAL_VALUES 83 No

CHAR_VALUES 84 No

POINT_VALUES 85 No
VECTOR_VALUES 86 No

AXIS VALUES 87 No

TAG_VALUES 88 No
DIRECTION_VALUES 89 No

GROUP 90 Yes Yes
MEMBER_OF_GROUP 91 No
UNICODE_VALUES 98 No

-111-

Parasolid XT Format

FIELD_NAMES 99 No
TRANSFORM 100 Yes Yes
WORLD 101 No
KEY 102 No
PE_SURF 120 Yes Yes
INT_PE_DATA 121 No
EXT_PE DATA 122 No
B_SURFACE 124 Yes Yes
SURFACE_DATA 125 No
NURBS_SURF 126 No
KNOT_MULT 127 No
KNOT_SET 128 No
PE_CURVE 130 Yes Yes
TRIMMED_CURVE 133 Yes Yes
B_CURVE 134 Yes Yes
CURVE_DATA 135 No
NURBS_CURVE 136 No
SP_CURVE 137 Yes Yes
GEOMETRIC_OWNER 141 No
HELIX_CU_FORM 163 No
HELIX_SU_FORM 184 No

-112 -

Node Classes

Node class name Node
class
GEOMETRY 1003
PART 1005
SURFACE 1006
SURFACE_OWNER 1007
CURVE 1008
CURVE_OWNER 1010
POINT_OWNER 1011
LIS BLOCK 1012
LIST_OWNER 1013
ATTRIBUTE_OWNER 1015
GROUP_OWNER 1016
GROUP_MEMBER 1017
FIELD_VALUES 1018
ATTRIB_GROUP 1019
TRANSFORM_OWNER 1023
PE_DATA 1027
PE_INT_GEOM 1028
SHELL_OR BODY 1029
FIELD_NAME 1037

-113-

Parasolid XT Format

Parasolid XT Format

System Attribute Definitions

All system attribute definitions are of class 1.

Hatching
Identifier SDL/TYSA_HATCHING
Type id 8003
Entity types face
Fields real real 1
rea 2
real 3
rea 4
integer Hatching type
Set by Application
Used by Parasolid hidden line and wireframe images

For planar hatching - the four real values define the hatch orientation as a vector and a
spacing between consecutive planes.

For radial hatching - the first three real values define the spacing of the hatch lines. The
fourth value is not used.

For parametric hatching - the first two real values define the spacing in u and v
respectively. The last two values are not used.

-114 -

Planar Hatch

Parasolid XT Format

Identifier [SDL/TYSA_PLANAR HATCH
Type id 8021
Entity types |face
Fields rea X component | ‘direction’ or plane normal
y component
z component
‘pitch’ or separation
X component | position vector
y component
z component
Set by Application
Used by | Parasolid hidden line and wireframe images

For planar hatching, an attribute with this definition takes precedence over an attribute
with the SDL/TY SA_HATCHING definition, if aface has both types of attribute

attached.

-115-

Parasolid XT Format

Radial Hatch

Identifier |SDL/TYSA_RADIAL_HATCH
Type id |8027
Entity types |face
Fields rea radial around

radial along
radial about

radial around start

radial along start

radial about start

Set by Application
Used by | Parasolid hidden line and wireframe images

For radial hatching, an attribute with this definition takes precedence over an attribute
with the SDL/TY SA_HATCHING definition, if aface has both types of attribute
attached.

Parametric Hatch

Identifier |SDL/TYSA_PARAM_HATCH
Type id | 8028
Entity types |face
Fields rea u spacing
V spacing

u start

v start

Set by Application
Used by | Parasolid hidden line and wireframe images

For parametric hatching, an attribute with this definition takes precedence over an
attribute with the SDL/TY SA_HATCHING definition, if aface has both types of
attribute attached.

-116 -

Parasolid XT Format

Density Attributes

There are density attributes for each of regions, faces, edges and verticesin addition to
the system attribute for density of a body.

The region/face/edge/vertex attributes will be taken into account when finding the mass,
centre of gravity and moment of inertia of abody or of the entity to which the attributeis
attached:

o Themass of aregion will not include that of any of its faces or edges, and the same
applies to faces and edges and their boundaries.

e A void region will always have zero mass whatever its density and a solid region will
inherit its density from the body if it does not have a density of its own.

e Thedefault density for faces, edges and vertices is always zero.

Density (of a body)

Identifier |SDL/TYSA_DENSITY
Type id | 8004
Entity types | body
Fields real Density
string Units

Set by Application
Used by | Parasolid Mass Properties - calculation of mass

A body without a density attribute is taken to have, by default, adensity of 1.0.

The character field unitsis not used by Parasolid but it can be set and read by the
application.

Region Density

Identifier |SDL/TYSA_REGION_DENSITY

Type id 8023
Entity types |region
Fields rea Density of region
string Units

Set by Application
Used by | Parasolid Mass Properties - calculation of mass

-117 -

Parasolid XT Format

This attribute only makes sense for solid regions; void regions always have a mass of
zero.

A solid region without a density attribute is taken to have, by default, the same density as
its owning body.

The character field unitsis not used by Parasolid but it can be set and read by the user.

Face Density

Identifier |SDL/TYSA_FACE_DENSITY
Type id |8024
Entity types |face
Fields rea Density of face
string Units

Set by Application
Used by | Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a mass per unit area.

A mass will be calculated for aface only when aface possesses this attribute. In all other
cases the mass of afaceis not defined.

The character field unitsis not used by Parasolid but it can be set and read by the user.

Edge Density

Identifier |SDL/TYSA_EDGE_DENSITY
Type id | 8025
Entity types | edge
Fields read Density of edge
string Units

Set by Application
Used by | Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a mass per unit length.

A masswill be calculated for an edge only when an edge possesses this attribute. In all
other cases the mass of an edge is not defined.

-118-

Parasolid XT Format

The character field unitsis not used by Parasolid but it can be set and read by the user.

Vertex Density

Identifier |SDL/TYSA_VERTEX_DENSITY
Type id | 8026
Entity types | vertex
Fields rea Mass of vertex
string Units

Set by Application
Used by | Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a point mass.

A mass will be calculated for avertex only when a vertex possesses this attribute. In al
other cases the mass of avertex is not defined.

The character field unitsis not used by Parasolid but it can be set and read by the user.

Region

Identifier |SDL/TYSA_REGION
Type_id |8013

Entity types |face

Fields string Unused

Set by Application

Used by | Parasolid hidden line images

Regional datawill allow the application to analyze a hidden-line picture for distinct
regionsin the 2D view.

-119-

Parasolid XT Format

Colour
Identifier [SDL/TYSA_COLOUR
Token 8001
Entity types |face
edge
Fields rea Red value These three values should be
intherange0.0to 1.0
Green value
Blue value
Set by Application
Used by | Application
Reflectivity
Identifier |SDL/TYSA_REFLECTIVITY
Token 8014
Entity types |face
Fields rea Coefficient of specular reflection
Proportion of colored light in highlights
Coefficient of diffuse reflection
Coefficient of ambient reflection
integer Reflection power
Set by Application
Used by |Application

The attribute types for Reflectivity and Translucency are also used by the Parasolid
routine RRPIXL, but the use of this routine is not recommended.

Translucency

Identifier
Token

SDL/TYSA_TRANSLUCENCY
8015

-120 -

Parasolid XT Format

Entity types |face
Fields rea Transparency |range0.0to 1.0, whereOis
coefficient opaque and 1 is transparent
Set by Application
Used by | Application
Name
Identifier |SDL/TYSA NAME
Token 8017
Entity types | assembly, body, instance, shell, face, loop, edge,

\vertex, group, surface, curve, point

Fields string | Name of entity
Set by Application
Used by | Application

Entities read into Parasolid from a Romulus 6.0 transmit file have their names held in
name attributes. Only entities to which the user has given names will be treated in this

way.

-121-

Parasolid XT Format

-122 -

	Types of File Documented
	Text and Binary Formats
	Standard File Names and Extensions
	The Alternative Solution
	Schema
	Field types
	Point
	Pointer classes
	Variable-length nodes
	Unresolved indices
	Simple example
	Common header
	Keyword Syntax

	Text
	Binary
	bare binary
	neutral binary

	Topology
	General points
	Entity definitions
	Assembly
	Instance
	Body
	Region
	Shell
	Face
	Loop
	Fin
	Edge
	Vertex
	Attributes
	Groups
	Node-ids

	Entity matrix
	Representation of manifold bodies
	Body types

	Underlying types
	Geometry
	Curves
	Surfaces
	Point
	Transform
	Curve and Surface Senses
	Geometric_owner

	Topology
	Associated Data
	Hatching
	Planar Hatch
	Radial Hatch
	Parametric Hatch

	Density Attributes
	Density (of a body)
	Region Density
	Face Density
	Edge Density
	Vertex Density

	Region
	Colour
	Reflectivity
	Translucency
	Name

