
Parasolid V13.0

Release Notes

June 2001

Important Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc.

© Copyright 2001 Unigraphics Solutions Inc. All rights reserved
Restricted Rights Legend: This commercial computer software and related documentation are
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable.
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the
terms of the applicable license agreement. Any copying of this documentation, except as permitted
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

Cambridge CB2 1DP
UK

Tel: +44 (0)1223 371555
Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com

Trademarks
Parasolid is a trademark of Unigraphics Solutions Inc.
HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.
IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.

OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual C/C++ and Window NT are registered trademarks of Microsoft Corp.
Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.

A
ATable of Contents

. .
Ch 1 Introduction .7
1.1 Introduction 7
1.2 This Document 7
1.3 Platform-specific information 8

Ch 2 The Product .9
2.1 Release Contents 9
2.2 Identification 9
2.3 Compatibility 9

2.3.1 Filename extensions on NT 9

Ch 3 Install ing Parasolid . 11
3.1 Disk Space Requirements 11

3.1.1 Software 11
3.1.2 Documentation 11

3.2 Copying files to a local disk 11
3.2.1 Using the installer (Intel NT only) 12
3.2.2 Copying files manually 12

3.3 Documentation 13
3.3.1 Viewing the documentation 13
3.3.2 Using the PDF documentation 14
3.3.3 Copying the documentation to a local hard disk or intranet 14
3.3.4 Minimizing disk requirements for documentation 15

3.4 Additional CDs 15

Ch 4 Parasolid Release Area 17
4.1 Contents of the Release Area 17

4.1.1 Privileges 17
4.1.2 The ‘base’ directory 17
4.1.3 The ‘base_alternative’ directory 19

4.2 Explanation of files 20
4.2.1 Files in ‘base’ 20
4.2.2 The Kernel Interface Driver (KID) 21
4.2.3 Schema files 21
4.2.4 Finding shared libraries 22
Release Notes 3

. .Table of Contents
Ch 5 Using Parasolid . 23
5.1 Parasolid 23
5.2 Schema Files 24
5.3 Frustrum 24
5.4 Kernel Interface Driver (KID) 26

5.4.1 Specifying environment variables 26
5.4.2 Running KID 26
5.4.3 KID Graphical Device Drivers 27

Ch 6 Functional Enhancements 29
6.1 Functional enhancements since V12.1 29

6.1.1 Identifying blend faces 29
6.1.2 Identifying facesets 29
6.1.3 Identifying and deleting details in bodies 30
6.1.4 Double-sided tapering 30
6.1.5 Advanced capping in edge blending 31
6.1.6 Generating patches for filling holes in sheets 31
6.1.7 Applying derivative constraints during lofting 32
6.1.8 Improvements to Y-blend functionality 32
6.1.9 Improvements to face-face blending 33
6.1.10Specifying blend radius during face change operations 33
6.1.11Enhanced support when replacing the surfaces of faces 33
6.1.12Creating step offsets 34
6.1.13Improvements to sweep 35
6.1.14Improvements to clash detection 36
6.1.15Simplifying geometry 36
6.1.16Removing duplicate sheets when sewing 36
6.1.17Smoothness tolerance between rendered faces 36
6.1.18Control of coincident edges in booleans or sectioning 36
6.1.19Attaching curve copies when sharing not possible 37
6.1.20Creating bodies with curves in different partitions 37
6.1.21Multiple viewports 37
6.1.22Parameters for facet vertices and degeneracies 37
6.1.23Adding change events to bodies to the bulletin board 37
6.1.24Support for Unicode part keys 38
6.1.25Support for transmitting parts in XML format 38
6.1.26Setting the amount of memory requested by Parasolid 38

6.2 Known issues in this release 39
6.2.1 Pentium 4 issues 39
6.2.2 HP-UX 64-bit issues 39

Ch 7 Interface Changes 41
7.1 Introduction 41
4 Release Notes

. .

7.2 PK functions and typedefs with changes in behavior 41

7.2.1 Specifying blend radius during face change operations 41
7.2.2 Errors during face change operations 42
7.2.3 Changes to blending algorithms 42
7.2.4 Errors during outline curves operations 42
7.2.5 Invalid matched regions 42
7.2.6 Control of coincident edges in booleans or sectioning 42
7.2.7 Clashing faces 43
7.2.8 Attaching curve copies when sharing not possible 43
7.2.9 Creating bodies with curves in different partitions 43
7.2.10Creating periodic B-curves 43
7.2.11Removing duplicate sheets when sewing 44
7.2.12Parameters for facet vertices and degeneracies 44
7.2.13Adding change events to bodies to the bulletin board 44

7.3 New Parasolid functionality 44
7.3.1 Improvements to face-face blending 45
7.3.2 Identifying blend faces 45
7.3.3 Identifying facesets 45
7.3.4 Identifying and deleting model details 45
7.3.5 Double-sided tapering 46
7.3.6 Creating step offsets 46
7.3.7 Controlling face merging when replacing faces 46
7.3.8 Generating patches for filling holes in sheets 47
7.3.9 Improvements to sweep 47
7.3.10Simplifying geometry 47
7.3.11Applying derivative constraints to guide wires 48
7.3.12Multiple viewports 48
7.3.13Smoothness tolerance between rendered faces 48
7.3.14Support for Unicode part keys 48
7.3.15Support for transmitting parts in XML format 49
7.3.16Setting the amount of memory requested by Parasolid 49

7.4 New PK Interface tokens 49
7.5 New PK interface error codes 52
7.6 Undocumented changes 52
7.7 Changes to the Parasolid documentation 53

7.7.1 New manuals in the documentation set 53
7.7.2 New face-face blending documentation 53
7.7.3 Documentation for datatypes and structures 53

7.8 Undocumented PK functions 53
7.8.1 Debug functionality 53
7.8.2 Approximate evaluations on geometry 54
7.8.3 Other undocumented functions 54

Ch 8 Environment . 55
Release Notes 5

. .Table of Contents
8.1 Introduction 55
8.2 Intel NT 55
8.3 Linux 57
8.4 HPPA HPUX 57
8.5 SPARC Solaris 58
8.6 AXP OSF 59
8.7 RS6000 AIX 59
8.8 R4000 IRIX 60
8.9 Linking NT run-time libraries 61
6 Release Notes

1
1Introduction

. .
1.1 Introduction
Parasolid is a copyright product of Unigraphics Solutions Inc. This document
covers details of the release of Parasolid and supporting utilities, and retrieval of
the product onto the following platforms:
� Intel-based PCs running Windows NT, Windows 2000, or Linux
� AMD Athlon-based PCs running Windows NT, Windows 2000, or Linux
� HP 9000 workstations running the HP-UX operating system
� SPARCstations 5, 10, 20 and Ultra, running the Solaris operating system
� Compaq Alpha workstations running the Tru64 operating system
� IBM RISC System/6000 running the AIX operating system
� Silicon Graphics, running the IRIX operating system

It assumes a basic knowledge of the operating system for the relevant platform
(creating and moving directories, deleting and listing files for example).

1.2 This Document
The chapters of this document describe:
� what this release comprises (“The Product”)
� how to retrieve the product from CD (“Installing Parasolid”)
� what files are included in the release (“Parasolid Release Area”)
� how to run the product (“Using Parasolid”)
� what enhancements (and known problems) are introduced in this version

(“Functional Enhancements”)
� how the product interface has changed in this version (“Interface Changes”)
� in what operating system environment the product was created

(“Environment”)
Release Notes 7

. .Introduction
1.3 Platform-specific information
Throughout this manual, text and instructions that are specific to a particular
platform or group of platforms are referred to as follows:

Label Platform
HPPA HPUX For HP 9000 workstations running the HP-UX operating

system
SPARC Solaris For SPARCstations (5, 10, 20, and Ultra) running the Solaris

operating system
AXP OSF For Compaq Alpha workstations running the Tru64 operating

system
RS6000 AIX For the IBM RISC System 6000 running the AIX operating

system
R4000 IRIX For Silicon Graphics platforms running the IRIX operating

system
Intel NT For Intel-based or Athlon-based PCs running Windows NT or

Windows 2000
Linux For Intel-based or Athlon-based PCs running Linux
UNIX Includes all, or the majority of, the following platforms:

� Intel-based or Athlon-based PCs running Linux
� HP 9000 platform running the HP-UX operating system
� SPARCstation platforms running the Solaris operating

system
� Compaq Alpha workstations running the Tru64 operating

system
� Silicon Graphics platform running the IRIX operating

system
� IBM RISC System 6000 platform running the AIX

operating system
NT Includes the following platforms:

� Intel-based PCs running Windows NT or Windows 2000
� AMD Athlon-based PCs running Windows NT or

Windows 2000
� Compaq Alpha PCs running Windows NT
8 Release Notes

2
2The Product

. .
2.1 Release Contents
This release of Parasolid consists of the following CDs:

2.2 Identification
The full version number for this release is 13.00.151.

The schema name for this release is SCH_13006.

2.3 Compatibility
Parts created in earlier versions of Parasolid are upward compatible with V13.0.

2.3.1 Filename extensions on NT
Up to V6.1, KID and the dummy Frustrum always created textual part files with
the extension “.X_T” and accessed textual schema files with the extension “.S_T”
(with a similar naming convention for other file guises and binary format files).

PC Platforms The Parasolid library, driver program, acceptance tests,
and other files necessary for the programs to run, for the
Intel NT and Linux platforms. This CD also contains the
PS/Workshop application for viewing and manipulating
part files, and the Example Application that is discussed
in Getting Started With Parasolid.

UNIX Software The Parasolid library, driver program, acceptance tests,
and other files necessary for the programs to run, for all
supported UNIX platforms

Documentation The Parasolid On-line Documentation Web in HTML
format

Parasolid
Interoperability Tools

Evaluation versions of PS/Translators and
PS/Bodyshop.

ParaHOOPS 3D
Part Viewer

A third-party part viewer for Parasolid parts.
Release Notes 9

. .The Product
Since V6.2, KID and the dummy Frustrum test whether a file resides on a DOS
style FAT device or a long name NTFS type device before opening the file, and
act accordingly:

� Files on NTFS devices use the same 7 character extensions (“.xmt_txt”,
“.sch_txt” etc.) as on the other platforms.

� Files on DOS style FAT devices use the same 3 character extension as at
V6.1. They are shown in the following table in upper case for clarity, though
the case is ignored.

This table shows the relationships between the FAT and NTFS names (files can
simply be renamed when transferring between the different systems):

FAT NTFS
part .X_T .xmt_txt
schema .S_T .sch_txt
journal .J_T .jnl_txt
snapshot .N_T .snp_txt
partition .P_T .xmp_txt
delta .D_T .xmd_txt
binary .*_B .***_bin
10 Release Notes

3
3Installing Parasolid

. .
3.1 Disk Space Requirements

3.1.1 Software
To install this release of Parasolid you will require the following disk space:

3.1.2 Documentation

If you are installing the documentation to a local hard disk, you can save on disk
space by omitting the search files or PDF files. See Section 3.3,
“Documentation”.

3.2 Copying files to a local disk
Follow these instructions to copy the Parasolid distribution onto a local hard disk.

Intel NT 58.5 Mbytes
Intel NT (Pentium 4) 59 MBytes
Linux 49.5 Mbytes
HPPA HPUX (32-bit) 107.5 Mbytes
HPPA HPUX (64-bit) 120 Mbytes
SPARC Solaris (32-bit) 94 Mbytes
SPARC Solaris (64-bit) 96.5 Mbytes
AXP OSF 94 Mbytes
RS6000 AIX 87 Mbytes
R4000 IRIX 98 Mbytes

Full installation, with search and PDF files 111 Mbytes
Search files 62.5 Mbytes
PDF files 36 Mbytes
Release Notes 11

. .Installing Parasolid
3.2.1 Using the installer (Intel NT only)
If you are running Windows 2000 or Windows NT on an Intel-based platform, you
can install Parasolid onto an NT filesystem as follows:

� Insert the CD in the drive. If your computer is set up to run data CDs
automatically, the Parasolid installer starts after a few moments.

If the installer does not start, run the file X:\intel_nt\setup.exe, where
X is the drive your CD is mounted on.

� Follow the instructions on screen to install Parasolid Designer and/or
Parasolid Communicator onto the filesystem.

3.2.2 Copying files manually
If you are running on UNIX or Linux, or if you do not want to use the supplied
installer, you can copy files to a filesystem as follows:

UNIX or Linux
To copy files to a UNIX or Linux filesystem:

� Insert the CD in the drive.
� Login as superuser.
� Create a mount point for the CD:

$ mkdir /cdrom
� Mount the CD onto the system at the mount point, using the following

example command:

Note: By default, Parasolid is installed in
C:\Program Files\Parasolid\kernel\v12.1, but you can choose a
different location from within the installer.

Platform Directory Example Command
HP 9000
Series 700

hppa_hpux $ pfs_mount -x lower_case /dev/dsk/clt2d0 /cdrom

SGI r4000_irix $ mount -t /dev/scsi/sc0d710 /cdrom
Sun sparc10_solaris (automatic mounting)
IBM rs6000_aix $ mount -r -v cdrfs /dev/cd0 /cdrom
Compaq
Alpha PC

axp_osf $ mount -t cdfs -o noversion /dev/rz3c /cdrom

Linux intel_linux $ mount /dev/cdrom /cdrom -t iso9660
12 Release Notes

. .Documentation
� Copy the files from the appropriate directory, as given in the table above. The
files are created under your current directory:
� cp -r /cdrom/directory/base to copy Parasolid Designer
� cp -r /cdrom/directory/base_alternative to copy Parasolid

Communicator

3.3 Documentation
The Documentation CD contains the Parasolid On-line Documentation in the
directory tree “html/online_docs”. This consists of the following Parasolid
manuals, provided in both HTML and PDF format:

� Functional Description
� Getting Started With Parasolid
� PK Interface Programming Reference
� KI Programming Reference
� Downward Interfaces
� Kernel Interface Driver (KID)
� Foreign Geometry User Guide
� Release Notes (this document)
In addition, the Transmit File (XT) Format manual is provided in PDF format only.

You need to have access to a web browser such as Netscape, Internet Explorer,
or Opera in order to view the HTML documentation.

3.3.1 Viewing the documentation
You can read the documentation directly from the CD as follows:

NT � Place the Documentation CD in your CD drive.
� If your computer plays data CDs automatically, the main page of the

documentation will be displayed in your internet browser after a short pause.
If your computer does not play data CDs automatically, use Windows Explorer to
open the file X:\html\online_docs\index.html, where X is the drive your
CD is mounted on.

Warning: On HP: make sure you have run the following daemons prior to this
command:
/usr/sbin/pfs_mountd
/usr/sbin/pfsd 4
Release Notes 13

. .Installing Parasolid
UNIX or Linux � Create a mount point for the CD: $ mkdir /cdrom
� Mount the CD onto the system at the mount point, using the example

commands given in Section , “UNIX or Linux” above.
� Use your web browser to open the file /cdrom/html/online_docs/

index.html.

3.3.2 Using the PDF documentation
You need a copy of the free Acrobat Reader program from Adobe Systems Inc.
to view the PDF documentation. A version that runs on Windows 95, Windows
98, Windows NT, or Windows 2000 is supplied on the Documentation CD. To
install this on your computer:

� Place the Documentation CD in your CD-ROM drive (hold down the Shift key
if you want to prevent the documentation from displaying while you do this).

� Run the file X:\acroread\ar405eng.exe, where X is the drive your CD
is mounted on.

If you use a UNIX-based operating system, or if you want to install a non-English
version of Acrobat Reader, you can download a version from
http://www.adobe.com/products/acrobat/readstep.html.

3.3.3 Copying the documentation to a local hard
disk or intranet
If you wish, you can copy the entire documentation set onto a local hard disk, or
a disk on your local intranet. To do this, just copy the entire online_docs folder
to a location of your choice. If you are using UNIX, you will need to mount the CD
drive first, as described in Section , “UNIX or Linux” above.

Once you have copied the documentation, create a bookmark or link to the
index.html file in the online_docs directory.
The HTML documentation uses Cascading Style Sheets to control the
appearance of the documentation: if your browser does not support CSS, or you
do not wish to use it, then you can rename or delete the file
online_docs\ps_doc.css.
14 Release Notes

http://www.adobe.com/products/acrobat/readstep.html

. .Additional CDs
3.3.4 Minimizing disk requirements for
documentation
If you do not want to use the search functionality provided in the full
documentation set, or if your browser does not support JavaScript, you can
reduce the disk space used by the documentation:

� Create a link or bookmark to the file index2.html instead of index.html
� Remove the searchfiles sub-directory from your installation
This will save you approximately 58MB of disk space, but you will not be able to
search through the entire documentation set.

You can save more disk space by removing the PDF documentation.

� If you wish to keep a copy of the XT Format Manual, copy the file
online_docs\pdf\xt_format.pdf to a safe place.

� Remove the pdf sub-directory from your installation
� If you wish, remove the pdf_index.html page from your installation

3.4 Additional CDs
The Parasolid Interoperability Tools and ParaHOOPS 3D Part Viewer CDs
contain samples of software for use with Parasolid. Some of this software is
provided for evaluation purposes only. Further information on the contents of
these CDs can be found in the Read Me files on each CD.
Release Notes 15

. .Installing Parasolid
16 Release Notes

4
4Parasolid Release Area

. .
4.1 Contents of the Release Area
As described in Chapter 3, “Installing Parasolid”, the top level of each Parasolid
release CD contains a directory for each platform available on that CD. For
example, the PC Platforms CD contains two directories: intel_nt, and
intel_linux.
Inside each directory is a base directory that contains all the files necessary to
install and use Parasolid for that platform.

On NT platforms, there is an additional base_alternative directory that
contains all the files necessary to install and use Parasolid Communicator.

On the SPARC Solaris platform, there is an additional base_sun64 directory
that contains all the files necessary to install and use Parasolid on 64-bit Solaris
machines. The contents of the base_sun64 directory are identical to the
contents of the base directory for SPARC Solaris.
This chapter describes the contents of these directories in some more detail.
Apart from some platform-dependent filenames (noted below), the contents are
essentially the same for each platform.

4.1.1 Privileges
You must make sure that all Parasolid users are able to read these files once
they have been copied from the CD. In addition, users will need to be able to
write files to the schema directory.

4.1.2 The ‘base’ directory
The base directory contains all the files needed to install and use the full
Parasolid kernel.

Note: This chapter describes the contents as they are structured on the
release CD. Your own installation of Parasolid will not necessarily reflect this
structure.
Release Notes 17

. .Parasolid Release Area
The top-level directory contains the following files.

Note: For the 64-bit version of Parasolid under SPARC Solaris, this directory is
called base_sun64. For the 64-bit version of Parasolid under HP-UX, this
directory is called base_hp64. For the Pentium 4 version of Parasolid, this
directory is called base_p4.

File Contents
fg.c Foreign Geometry source code
fg.lib Foreign Geometry library
fg_library.bat,
fg_library.com

Commands to compile ‘fg.c’ and create a Foreign
Geometry library

frustrum.c Dummy frustrum source code
frustrum_delta.c Example Partitioned Rollback Frustrum code
frustrum.lib Dummy frustrum library
frustrum_ifails.h Return failure codes include file for Frustrum
frustrum_library.bat,
frustrum_library.com

Commands to compile ‘frustrum.c’ and create
Frustrum library

frustrum_link.bat,
frustrum_link.com

Commands to compile and link ‘frustrum_test’

frustrum_test.c Source of Frustrum library acceptance test
frustrum_tokens.h Token names include file for Frustrum
kernel_interface.h KI header file
kid_test.lsp KID acceptance test
pskernel_archive.lib Parasolid library. Formerly parasolid.lib.
parasolid_debug.h Unsupported PK functions that aid application

debugging
parasolid_ifails.h Return failure codes include file for Parasolid
parasolid_kernel.h PK interface header file for functions available in

full Parasolid kernel.
parasolid_link.bat,
parasolid_link.com

Commands to compile and link ‘parasolid_test.c’

parasolid_test.c Source of Parasolid library acceptance test
parasolid_tokens.h Token names include file
18 Release Notes

. .Contents of the Release Area
The ‘lispdata’ sub-directory
This directory contains just one file.

The ‘schema’ sub-directory
This directory contains a number of schema files whose names have the form
“sch_sch_txt”.

The ‘dll’ sub-directory (NT)
This directory contains a Parasolid DLL and its corresponding import libraries,
and a KID executable linked to the full Parasolid kernel as a shared image. The
following DLL is available:

� pskernel.dll – standard DLL for full Parasolid kernel

The ‘shared_object’ sub-directory (UNIX)
This directory contains the Parasolid library and KID as shared images. The
shared object files available are as follows:

� libpskernel.so – standard file for full Parasolid kernel
� libpskernel.sl – standard file for full Parasolid kernel (HP only)

4.1.3 The ‘base_alternative’ directory
The base_alternative directory contains all the files needed to install and
use Parasolid Communicator. The top-level directory contains the following files.

parasolid_typedefs.h Supporting typedefs for KI
testfr.lib Library containing the Frustrum test function

bbcini.lsp KID LISP initialization start-up file

File Contents

File Contents
frustrum_ifails.h Return failure codes include file for Frustrum
frustrum_tokens.h Token names include file for Frustrum
parasolid_communicator.h PK interface header file for functions available in

Parasolid Communicator.
parasolid_ifails.h Return failure codes include file for Parasolid
parasolid_tokens.h Token names include file
Release Notes 19

. .Parasolid Release Area
The ‘schema’ sub-directory
This directory contains a number of schema files whose names have the form
“sch_sch_txt”.

The ‘dll’ sub-directory (NT)
This directory contains the DLL for Parasolid Communicator
(pscommunicator.dll) and its corresponding import library:

4.2 Explanation of files

4.2.1 Files in ‘base’

Parasolid library
This is the library of modeling subroutines which will be accessed by the
application program via the PK interface functions.

PK and KI interface header files
Interface functions and type declarations for C applications.

Ifails and tokens include files
These are necessary for an application program to avoid using numeric values
for PK arguments. They are specific to C, but can be easily edited, for example,
to be FORTRAN integer variables.

Parasolid test code
This is included so that you can make a simple test that the library is set up
correctly before integrating it with the application program. Parasolid requires a
Frustrum - thus a dummy frustrum library is also included. This should only be
used for acceptance testing, any customer Frustrum should be written to suit the
application. Parasolid also requires Foreign Geometry functions - example
functions are included.

Frustrum test code
This tests the dummy frustrum library in isolation from the Parasolid library. It
uses the Frustrum tester function (TESTFR), see the Parasolid Downward
Interface manual for a full explanation of this. This program can also be used to
test your Frustrum.
20 Release Notes

. .Explanation of files
Frustrum source code and library
Supplied for running the above.

Frustrum library command file
Supplied to build a Frustrum library from the source code.

Frustrum link and Parasolid link command files
These are supplied to link the test programs with the libraries. They can be
copied and modified to link any program with Parasolid.

4.2.2 The Kernel Interface Driver (KID)
The KID program provides a LISP front-end to the Parasolid library, which can be
used to learn the Kernel, prototype applications and report faults. For a full
description see the Parasolid Kernel Interface Driver (KID) Manual. KID loads the
LISP initialization file at start-up. The KID test file is supplied as an acceptance
test for the KID program.

4.2.3 Schema files
Schema files describe the format and content of Parasolid part files (transmit or
partition files), and they are supplied so that a Parasolid-powered application can

� read part files created using other versions of Parasolid
� write part files that can be read in older versions of Parasolid

A schema file is a platform independent, text based file with a name of the form
sch_XXX.sch_txt (or sch_XXX.s_t for DOS FAT filesystems).
Each major version (e.g. V11.0, V12.0) has its own schema file. Minor versions
(e.g. V11.1) usually use the most recent schema file. The appropriate schema file
must be present when transmitting or receiving a part file. For instance if you are
trying to read a V11.0 or V11.1 part file into Parasolid V12.0, the relevant schema
file (sch_11004, in this case) must be present.

Parasolid guarantees upward compatibility of part files between major versions
of Parasolid. To support this, schema files corresponding to all previous versions
of Parasolid are provided with each new release.

Parasolid also guarantees two-way compatibility within a major version of
Parasolid (e.g. a V11.0 file can be read into V11.1 and vice-versa).
Downward compatibility of Parasolid files between major versions is not
supported. For example, you cannot read a v12.0 file into v11.1.
Release Notes 21

. .Parasolid Release Area
4.2.4 Finding shared libraries
Customers can link the shared Parasolid image into the application and can then
do upgrades/patches by just providing a new image. The customer must make
sure that the Parasolid version of the new image is compatible with the old one.

To check this at run time, the application writer can use run-time library functions
to open the shared image (e.g. dlopen() on some UNIX machines) and call
PK_SESSION_ask_kernel_version to extract the version information.
The shared KID image (available only with the full Parasolid kernel) contains
embedded information about where to look for the Parasolid library. This
information may need to be overridden, so that the run-time loader will search the
directory where the customer has put the libraries:

UNIX
There is usually an environment variable (often called LD_LIBRARY_PATH) that
can be used to override the library search paths built into the image.

NT
The PATH environment variable is also used as the DLL search path.

Warning: You should not attempt to “force” downward compatibility by copying
the schema file for a later release into an earlier release of Parasolid. The
behavior under these circumstances is not guaranteed or supported by
Parasolid. Furthermore, the behavior of downstream operations on such parts
is also not guaranteed.
22 Release Notes

5
5Using Parasolid

. .
5.1 Parasolid
UNIX Parasolid is supplied as

� A library. An executable image can be made by linking the object of a main
program with the Parasolid, Frustrum and Foreign Geometry libraries; and

� A shared object library. An executable image can be made by linking the
object of a main program with the Frustrum and Foreign Geometry libraries
and the Parasolid shared object library in the ‘shared_object’ sub-directory.

In order to use the shared object library supplied, applications must register a
frustrum using PK_SESSION_register_frustrum – see Chapter 5, “Registering
the Frustrum” in the Downward Interfaces Manual for further details.

NT Two versions of Parasolid can be used in your applications, as follows:
� The main Parasolid kernel, containing the whole of Parasolid.
� Parasolid Communicator, a cut-down version of Parasolid containing limited

functionality, for use in smaller applications that do not require access to the
full range of Parasolid functionality.

The main Parasolid kernel is supplied as:

� An object file library (pskernel_archive.lib) which has been created
using the Microsoft Visual C/C++ 32 bit compiler. An executable image can
be made by linking the object of a main program with the Parasolid, Frustrum
and (if required) Foreign Geometry libraries.

� A DLL (pskernel.dll) created from the object file library (using all default
options with the exception of /BASE:0x40000000). An executable image
can be made by linking the object of a main program with the Frustrum and
(if required) Foreign Geometry libraries and the Parasolid ‘interface library’,
pskernel.lib in the dll directory.

Function headers for the functions available in the full Parasolid kernel can be
found in the file parasolid_kernel.h.

Parasolid Communicator is supplied as:

� A DLL (pscommunicator.dll) created from the object file library (using all
default options with the exception of /BASE:0x40000000). An executable
image can be made by linking the object of a main program with the Frustrum
and (if required) Foreign Geometry libraries and the Parasolid ‘interface
library’, pscommunicator.lib in the dll directory.
Release Notes 23

. .Using Parasolid
Function headers for the functions available in the Parasolid Communicator can
be found in the file parasolid_communicator.h.

In order to use the supplied DLLs, your application must register a frustrum using
PK_SESSION_register_frustrum – see Chapter 5, “Registering the Frustrum” in
the Downward Interfaces manual for further details. See Chapter 8,
“Environment”, in this manual, for more details on building and linking Parasolid.
The file parasolid_link.com, or parasolid_link.bat on NT platforms,
shows examples of linking or binding Parasolid.

5.2 Schema Files
When transmitting part files, the schema file for the current version of Parasolid
will be written to the schema directory of your Parasolid installation if it is not
already present. The schema directory must be writable for this reason. If a
previous version of Parasolid has been used to transmit parts which are to be
received into a new version then the schema file for the previous version must be
present in the schema directory of the new version.

In an NT application, your frustrum can look for schema files in one of two ways:
� Use a registry setting
� Use an environment variable

The dummy frustrum uses an environment variable called P_SCHEMA.

5.3 Frustrum
When writing simple Parasolid programs, you may wish to initially use the
dummy frustrum provided. The command files ‘frustrum_library.com’ or

Note: For applications not using the Frustrum registration mechanism, Foreign
Geometry functions must be linked in - even if the Foreign Geometry
functionality is not used - to resolve all ‘downward’ references from Parasolid.
A file, fg.c, of example functions is supplied for this purpose.

Note: If you use the dummy frustrum on NT, the %P_SCHEMA% environment
variable is assumed to point to a directory on an NTFS file system. If
%P_SCHEMA% points to a DOS FAT file system instead, you must copy and
rename the schema files so that they have the extension .s_t.

Take care to preserve schema files when updating Parasolid versions.
24 Release Notes

. .Frustrum
‘frustrum_library.bat’ on NT platforms will create you a dummy frustrum library
from the ‘C’ file, although this library is provided with the release.

The dummy frustrum source is provided primarily as a guide to help you develop
your own frustrum. It also gives you a frustrum to use during the initial phases of
the application development.

If you wish to use the dummy frustrum, then you must either set an environment
variable called P_SCHEMA to be able to access the schema files, or you must
modify the code in the dummy frustrum so that the schema directory is specified
explicitly, and P_SCHEMA is not used.

If you decide to set P_SCHEMA rather than modify the code, do it as follows:

UNIX
Bourne shell $ P_SCHEMA="full SCHEMA directory pathname"
‘C’ shell $ setenv P_SCHEMA "full schema directory pathname"

NT
P_SCHEMA=full SCHEMA directory pathname
Your finished application should not use the dummy frustrum.
You will need to make sure this command is executed each time you log in. The
simplest way to do this is to specify it in the Environment tab of the System
Control Panel applet. Alternatively, you can add the statement to your ‘.profile’
script or ‘login.com’ file as appropriate. The full pathname needs to be given so
that Parasolid can be run from any directory location.

Note: On NT and Windows 2000 we recommend that your frustrum creates
text files as stream, i.e. LF terminated, rather than using the DOS default (CR
and LF terminated). Implementation details can be found in the dummy
frustrum.
The dummy frustrum is not fully functional and does not contain all of the
system calls required for a working frustrum. See the notes in the source file,
‘frustrum.c’ for further details.

Note: Unlike UNIX, you do not explicitly use quote (") marks when specifying
environment variables in NT. This is true even if the pathname contains white
space characters.
Release Notes 25

. .Using Parasolid
5.4 Kernel Interface Driver (KID)

5.4.1 Specifying environment variables
In order to run KID, you need to specify some environmental variables :

� PARASOLID refers to the ‘base’ directory; it provides a useful shortcut to
specifying the full pathname to this directory at the command line.

� P_LISP points to a directory that contains information needed by KID.
� P_SCHEMA points to the directory that contains the schema files.
If your application uses the dummy frustrum, then you may have already
specified P_SCHEMA.

UNIX
The environment variables should be set up as follows:

Bourne shell $ PARASOLID="base directory pathname"
$ P_LISP="full LISP directory pathname"
$ P_SCHEMA="full SCHEMA directory pathname"
$ export PARASOLID P_LISP P_SCHEMA

‘C’ shell $ setenv PARASOLID "base directory pathname"
$ setenv P_LISP "full LISP directory pathname"
$ setenv P_SCHEMA "full schema directory pathname"

NT
The environment variables should be set up as follows:
PARASOLID=base directory of pathname
P_LISP=full LISPDATA directory pathname
P_SCHEMA=full schema directory pathname
You need to make sure these commands are executed each time you log in. The
simplest way to do this is to specify them in the Environment tab of the System
Control Panel applet. Alternatively, you can add the statements to your ‘.profile’
script or ‘login.com’ file as appropriate. The full pathnames should be given as
this will permit Parasolid to be run from any directory location.

5.4.2 Running KID
KID is supplied as an executable file and can be invoked as described below

UNIX Type the following at a UNIX prompt:
$ $PARASOLID/kid.exe
When executed, the image will attempt to load the file ‘$P_LISP/bbcini.lsp’
26 Release Notes

. .Kernel Interface Driver (KID)
To allow file names of 255 characters (instead of the 14 character default length
specified by some versions of UNIX) it is recommended that the UNIX operating
system is re-configured.

If this is not done, KID will be limited to working with six character file keys and
problems may occur when using rollback.

NT Either open the base directory in Windows Explorer and double-click the file
kid.exe, or type the following in a command prompt window:
$ %PARASOLID%\kid.exe
When executed the image will attempt to load the file ‘%P_LISP%\bbcini.lsp’.

5.4.3 KID Graphical Device Drivers

Opening a Graphics Window
HPPA HPUX An X-window graphics driver is included within KID. To use this driver, invoke X-

windows before executing KID, then before using any other graphics commands,
type at the LISP prompt:
> (graphics open_device ’x)
KID creates a window, like any X-window, that can be re-sized, moved, etc.
However you will need to refresh the graphics each time the window is
manipulated by using:
> (graphics redraw)

SPARC Solaris KID supports graphics on the SPARCstation via OpenWindows. An X-window
graphics driver can be used by invoking OpenWindows before starting KID, then
typing the following at the LISP prompt, before using any other graphics
commands:
> (graphics open_device ’x)

NT A Windows NT graphics driver is included within KID. To use this driver, type:
> (graphics open_device ’nt)
A separate graphics window will open; note that it isn't automatically placed in the
foreground, and thus can be hidden by your console/lisp window.

On all other
platforms:

The KID image provides graphics support for X-windows. To use this, type the
following at the LISP prompt, before using any other graphics commands:
> (graphics open_device ’x)

Null graphics device
If no graphics are required, use:
> (graphics open_device ’null)
Release Notes 27

. .Using Parasolid
Opening a null device will allow you to call Parasolid rendering functions without
getting graphics output (for example, for testing purposes).

Graphics Enquiry
You can ensure KID graphics are set up correctly using:
> (graphics enquire)
28 Release Notes

6

. .

6Functional
Enhancements
6.1 Functional enhancements since V12.1
This chapter describes the functional enhancements that have been added to the
current release of Parasolid.

6.1.1 Identifying blend faces
You can now identify any constant radius blend faces in a supplied array of faces,
together with their radii and convexities.

Figure 6–1 Identifying constant radius blends in a set of faces

For more information, see Chapter 40, “Simplifying Models”, of the Functional
Description.

6.1.2 Identifying facesets
You can now divide a given body into facesets bounded by a set of supplied
edges. A variety of options are available to let you return all facesets, only those
that contain a set of supplied topologies, only those that exclude topologies, or
alternating facesets.

Note: For detailed information on interface changes see Chapter 7, “Interface
Changes”.
Release Notes 29

. .Functional Enhancements
For more information, see Chapter 40, “Simplifying Models”, of the Functional
Description.

6.1.3 Identifying and deleting details in bodies
New functionality has been added that you can use to aid simplification of bodies.

It is now possible to return facesets in a body that are recognized as particular
types of detail (e.g. holes), and you can delete specifed facesets from a given
body. Used in conjunction, it is now possible to identify and remove particular
details from a body in a robust manner.
For more information, see Chapter 40, “Simplifying Models”, of the Functional
Description.

6.1.4 Double-sided tapering
Parasolid’s tapering functionality has been extended to provide single and
double-sided tapering of a body. This specialized functionality lets you design
parted molds in a single step.

Figure 6–2 Performing (a) double-sided and (b) single-sided tapering on a body

(a)

(b)

miteredunmitered
30 Release Notes

. .Functional enhancements since V12.1
For more information, see Chapter 21, “Local Ops: Double-Sided Tapering”, of
the Functional Description.

6.1.5 Advanced capping in edge blending
Previously, it was not possible to cap an edge blend if the edges that were
extended to cap the blend intersected. This restriction has now been removed.

Figure 6–3 Capping edge blends where edges extended to form cap intersect

This functionality can be switched off using the update control in
PK_BODY_fix_blends. For more information, see Chapter 30, “Edge Blending
Functions and Options”, of the Functional Description.

6.1.6 Generating patches for filling holes in
sheets
Parasolid can now generate faces to fill a hole in a sheet body. Previously your
application was required to supply a suitable sheet body. When Parasolid
generates a patch, the boundary of the hole is maintained, and the filling
geometry meets the surrounding faces on the hole smoothly.

this edge is blended

this edge is
blended

these edges
are extended
to create cap
faces

extended edges
intersect here

extended
edges
intersect here

these edges are
extended to create
cap faces
Release Notes 31

. .Functional Enhancements
Figure 6–4 Generating a patch to fill a hole

For more information, see Chapter 16, “Local Ops: Creating Surfaces to Attach
to Faces”, of the Functional Description.

6.1.7 Applying derivative constraints during
lofting
Derivative constraints can now be applied to guide wires and intermediate
profiles when constructing a lofted body. Previously, derivative constraints could
only be applied to loft profiles.

Figure 6–5 Applying derivative constraints to guide wires during lofting

For more information, see Chapter 27, “Advanced Surfacing”, of the Functional
Description.

6.1.8 Improvements to Y-blend functionality
Parasolid’s functionality for creating Y-shaped blends has been extended. You
can now create two Y-shaped blends that meet at a vertex. Any intermediate
edges between the blends must be smooth for the blends to be successful.
Additionally, you can now apply a Y shaped blend in cases where two edges
forming a Y-blend do not meet smoothly, providing that there is a second Y-blend
at the same vertex.
32 Release Notes

. .Functional enhancements since V12.1
Figure 6–6 Creating two Y-shaped blends at a vertex
For more information, see Chapter 30, “Edge Blending Functions and Options”,
of the Functional Description.

6.1.9 Improvements to face-face blending
Parasolid’s face-face blending functionality has been improved as follows:

� You can now specify the cross-sectional shape of a face-face blend directly.
� Face-face blending now supports the creation of chamfer blends, in addition

to curvature continuous and conic blends.
� You can now create constant radius blends with disc and isoparameter

cross-section planes. Previously, these were only possible with rolling-ball
cross-section planes.

For more information, see Chapter 33, “Face-Face Blending”, of the Functional
Description.

6.1.10 Specifying blend radius during face change
operations
When regenerating blends as part of a face change operation, you can now
specify the radius of the blend when it is reapplied. If no blend radius is specified
then the blend radius of the original blend is used when the blend is reapplied.
For more information, see Chapter 23, “Local Ops: Generic Face Editing”, of the
Functional Description.

6.1.11 Enhanced support when replacing the
surfaces of faces
Parasolid has enhanced its support for replacing the surfaces of faces.

smooth
intermediate edge
Release Notes 33

. .Functional Enhancements
You can now replace the surfaces of several faces with a single replacement
surface by passing the replacement surface to Parasolid once. Previously, you
needed to pass the replacement surface several times: once for each face being
replaced.

You can now control how adjacent faces are merged after replace face
operations, in cases where the faces become mergable, as shown in Figure 6–7.

Figure 6–7 Controlling merging of faces during replace face operations
No merging is performed for edges for which replacement curves have been
provided. Merging is recommended when adjacent faces are to acquire identical
surfaces.

For more information, see Chapter 17, “Local Ops: Tweaking the Surfaces of
Faces”, and Chapter 23, “Local Ops: Generic Face Editing”, of the Functional
Description.

6.1.12 Creating step offsets
Parasolid can now automatically create offset step faces along smooth
boundaries between offset and non-offset faces in a body.

Replace the
surfaces of the
faces in this block…

…with the surface
of this face
34 Release Notes

. .Functional enhancements since V12.1
Figure 6–8 Creating step faces during offsetting

For more information, see Chapter 19, “Local Ops: Hollowing & Offsetting”, of the
Functional Description.

6.1.13 Improvements to sweep
When sweeping, you can now remove undesirable twists from the swept body.
This is done by ignoring regions of the specified path with rapidly changing
curvature.

Figure 6–9 Removing undesirable twisting in sweep operations

For more information, see Chapter 27, “Advanced Surfacing”, of the Functional
Description.

offset faces

step faces created
by Parasolid

Area of twisting
caused by rapidly
changing curvature

Twisting
removed using
new functionality
Release Notes 35

. .Functional Enhancements
6.1.14 Improvements to clash detection
Detection of clashing topology has been improved. Previously, it was only
possible to detect clashes between two sets of bodies. It is now possible to detect
clashes between bodies, faces, or both.

� When two bodies, or a body and a face, are clashed, a list of clashing faces
is returned

� When two faces are clashed, a list of clashing edges is returned.

For more information, see Chapter 9, “Boolean Operations”, of the Functional
Description.

6.1.15 Simplifying geometry
You can now simplify the B-geometry for a supplied list of faces and their edges.
Previously, it was only possible to simplify the B-geometry of an entire body.
For more information, see Chapter 40, “Simplifying Models”, of the Functional
Description.

6.1.16 Removing duplicate sheets when sewing
When sewing sheet bodies together, you can now request that sheets are
removed if they are duplicates to within the specified gap width bound of the
sewing operation.

For more information, see Chapter 36, “Sheet Sewing”, of the Functional
Description.

6.1.17 Smoothness tolerance between rendered
faces
When rendering edges, you can now specify an angle of tolerance, within which
faces on either side of the rendered edge are considered smooth.
For more information, see Chapter 53, “Rendering Option Settings”, of the
Functional Description.

6.1.18 Control of coincident edges in booleans or
sectioning
You can now control which of two coincident edges survives in a boolean or
section operation.

For more information, see Chapter 9, “Boolean Operations”, and Chapter 11,
“Sectioning”, of the Functional Description.
36 Release Notes

. .Functional enhancements since V12.1
6.1.19 Attaching curve copies when sharing not
possible
Previously, curves that were already attached to edges, fins or nominal geometry,
were shared whenever possible. Attaching the curve failed if this sharing was not
possible. This behavour has now changed, so that if sharing is not possible a
copy of the curve is made and attached to the edge.

6.1.20 Creating bodies with curves in different
partitions
When creating wire bodies using curves from several different partitions, any
input curves in a partition other than the current partition are duplicated. The
resultant body is in the current partition.

6.1.21 Multiple viewports
You can now use multiple viewports with PK_TOPOL_render_line. The existing
single viewport functionality remains unchanged. An extra option is available to
let you specify an array of multiple viewports.
For more information, see Chapter 53, “Rendering Option Settings”, of the
Functional Description.

6.1.22 Parameters for facet vertices and
degeneracies
When a facet vertex occurs at a degeneracy, the value of the degenerate
parameter at the degenerate vertex can now be calculated from the average of
the values of that parameter at the two facet vertices at the other ends of the
facet edges which meet at the degenerate vertex. The normals and derivatives at
the degenerate vertex are evaluated using this average value for the degenerate
parameter.

For more information, see Chapter 54, “Facet Mesh Generation”, of the
Functional Description.

6.1.23 Adding change events to bodies to the
bulletin board
You can now specify that change events to bodies should appear on the bulletin
board. If this is specified, then the first change to a body after the bulletin board
was created or emptied results in a change event on the bulletin board.
Release Notes 37

. .Functional Enhancements
For more information, see Chapter 57, “Bulletin Board”, of the Functional
Description.

6.1.24 Support for Unicode part keys
Parasolid now supports part keys in 16-bit Unicode form as well as the native
character set. To preserve runtime compatibility with older applications, the extra
fields in various Frustrum structures must be explicitly enabled via
PK_SESSION_set_unicode; otherwise the fields are ignored and the appropriate
receive/transmit functions will fail.

For more information, see the Downward Interfaces manual, in particular,
Chapter 2, “File Handling”, Appendix A, “Frustrum Functions”, and Appendix E,
“Application I/O Functions”.

6.1.25 Support for transmitting parts in XML
format
To support the Parasolid eXT schemas, you can now transmit text versions of
parts, partitions, and sessions with character data translated into a format
suitable for embedding in XML files. This format escapes the “<“ and “&”
characters.

For more information, see Chapter 42, “Archives”, of the Functional Description.

6.1.26 Setting the amount of memory requested by
Parasolid
You can now configure and enquire about the minimum amount of contiguous
memory space that Parasolid requests for modeling operations. This can be
done at any point – even when the modeler is not running. You can also reset the
default smallest block size at any time. When the modeler is stopped the smallest
block size is always returned to Parasolid’s default block size.

For more information, see Chapter 58, “Session Support”, of the Functional
Description.

Note: Your application code must be fully re-compiled if you wish to make use
of Unicode functionality.
38 Release Notes

. .Known issues in this release
6.2 Known issues in this release
This section includes miscellaneous issues that are not covered elsewhere in this
chapter.

6.2.1 Pentium 4 issues
The Pentium 4 version of Parasolid V13.0 FCS was built using a beta-release
compiler, and is therefore a beta release. A version built using a production-
release compiler will be made available in a later patch release.
SMP is currently switched off in the Pentium 4 version of Parasolid V13.0.

6.2.2 HP-UX 64-bit issues
SMP is currently switched off in the 64-bit version of Parasolid V13.0.
Release Notes 39

. .Functional Enhancements
40 Release Notes

7
7Interface Changes

. .
7.1 Introduction
This chapter describes changes that have been made to the PK interface for
Parasolid V13.0. This information is structured as follows:
� Section 7.2 describes changes to existing PK functions and typedefs.
� Section 7.3 describes new PK functions and typedefs that have been added

in this release.
� Section 7.4 lists new PK interface tokens
� Section 7.5 lists new PK interface error codes
� Section 7.6 describes changes to Parasolid that are not documented, and

should not therefore be relied on in your application code
� Section 7.7 lists significant changes to the PK header documentation other

than those changes that have been necessary as a result of new or changed
functionality

� Section 7.8 lists undocumented functions that should not be used in your
code.

7.2 PK functions and typedefs with
changes in behavior
This section describes enhancements made to existing PK functions and
typedefs since Parasolid V12.1, resulting in a change to the function interface or
a change in behavior.

We recommend that you review the use of these functions in your applications.

7.2.1 Specifying blend radius during face change
operations

Changed
structure

PK_FACE_change_blend_o_t
If the operation PK_FACE_change_type_blend_c is requested in
PK_FACE_change, you can now specify the radius of the blend when it is
reapplied. If no blend radius is specified the radius used when the blend is
reapplied is that of the original blend.
Release Notes 41

. .Interface Changes
7.2.2 Errors during face change operations
Changed
function

PK_FACE_change

PK_FACE_change can now return the errors

� PK_ERROR_failed_to_blend
� PK_ERROR_failed_to_offset
� PK_ERROR_failed_to_taper
� PK_ERROR_failed_to_replace
� PK_ERROR_failed_to_transform
If such an error is returned at least one of the requested operations has failed.

7.2.3 Changes to blending algorithms
New structure PK_blend_edge_update_t

Changed
structure

PK_BODY_fix_blends_o_t

The new update option enables or disables some changes to the blending
algorithms that might cause differences in model updates between different
versions of Parasolid.

7.2.4 Errors during outline curves operations
Changed
function

PK_BODY_make_curves_outline
PK_BODY_make_curves_outline may return:

� PK_ERROR_unsuitable_entity if the given entities are not solid or sheet
bodies

� PK_ERROR_non_manifold if the result would not be a set of closed loops
� PK_ERROR_failed_to_make_outline if the function fails

7.2.5 Invalid matched regions
Changed
functions

PK_BODY_boolean
PK_BODY_boolean_2

These functions now return PK_ERROR_invalid_match_region if the topologies
in the matched region are not in the target or tools for the boolean operation.

7.2.6 Control of coincident edges in booleans or
sectioning

Changed
structures

PK_BODY_boolean_o_t
PK_FACE_boolean_o_t
42 Release Notes

. .PK functions and typedefs with changes in behavior
PK_BODY_section_o_t
PK_FACE_section_o_t

There is a new keep_target_edges option that controls which edge survives
when two edges are coincident in a boolean or section operation.

7.2.7 Clashing faces
Changed
function

PK_TOPOL_clash
PK_TOPOL_clash has been modified to allow individual faces to be clashed
together. Previously, it was only possible to clash entire bodies.

� When two bodies, or a body and a face, are clashed, a list of clashing faces
is returned

� When two faces are clashed, a list of clashing edges is returned.

7.2.8 Attaching curve copies when sharing not
possible

Changed
function

PK_EDGE_attach_curve_nmnl
Previously, PK_EDGE_attach_curve_nmnl shared curves that were already
attached to edges, fins or nominal geometry, and failed if sharing was not
possible. This behavour has now changed, so that if sharing is not possible a
copy of the curve is made and attached to the edge.

7.2.9 Creating bodies with curves in different
partitions

Changed
function

PK_CURVE_make_wire_body_2

When making a body with PK_CURVE_make_wire_body_2, any input curves in
a partition other than the current partition will be duplicated. The resultant body
will always be in the current partition.

7.2.10 Creating periodic B-curves
Changed
structure

PK_knot_type_t
A new value, PK_knot_do_wraparound_c, allows you to create periodic B-curves
using the same data as in the KI function CRBSPC.
Release Notes 43

. .Interface Changes
7.2.11 Removing duplicate sheets when sewing
Changed
function

PK_BODY_sew_bodies

Changed
structure

PK_BODY_sewing_removal_t

Identification and removal of duplicate sheets within PK_BODY_sew_bodies has
been extended. You can now use the duplicate_removal option to request
that sheets are removed if they are duplicates to within the tolerance given as the
gap_width_bound of the sewing operation.

7.2.12 Parameters for facet vertices and
degeneracies

Changed
structures

PK_facet_degen_t
PK_TOPOL_facet_mesh_o_t

PK_facet_degen_t can now take the value PK_facet_degen_average_parms_c,
which allows multiple vertices to be output at singularities in the same way as
PK_facet_degen_multiple_vxs_c.

In this case when a facet vertex occurs at a degeneracy, the value of the
degenerate parameter at the degenerate vertex is the average of the values of
that parameter at the two facet vertices at the other ends of the facet edges which
meet at the degenerate vertex. The normals and derivatives at the degenerate
vertex are evaluated using this average value for the degenerate parameter.

7.2.13 Adding change events to bodies to the
bulletin board

Changed
structure

PK_BB_sf_t

You can now specify that change events to bodies should appear on the bulletin
board. If this is specified in the PK_BB_sf_t argument to PK_BB_create, then the
first change to a body after the bulletin board was created or emptied, will result
in a change event on the bulletin board.

7.3 New Parasolid functionality
This section describes new PK functions and typedefs that have been added to
Parasolid V13.0. These interface changes have been made to provide access to
new functionality in Parasolid.
44 Release Notes

. .New Parasolid functionality
7.3.1 Improvements to face-face blending
Changed
function

PK_FACE_make_blend

Changed
structures

PK_FACE_make_blend_o_t
PK_blend_shape_t

New structures PK_blend_xs_shape_t
PK_blend_xs_plane_t
The capabilities of face-face blending have been expanded so that you can now
choose the cross-sectional shape of any blend directly.

Any face-face blend may now be a chamfer, a curvature continuous blend or a
conic blend. This is controlled by setting xs_shape in the PK_blend_shape_t
substructure of the option structure.

You can now create constant radius blends with disc and isoparameter cross-
section planes, using the xsection option. Previously, these were only possible
with rolling-ball cross-section planes.

7.3.2 Identifying blend faces
New function PK_FACE_identify_blends

New structures PK_FACE_identify_blends_o_t
PK_FACE_identify_blends_r_f
PK_FACE_identify_blends_r_t
PK_comparison_t

It is now possible to identify any constant radius blend faces in a supplied array
of faces, together with their radii and convexities.

7.3.3 Identifying facesets
New function: PK_BODY_find_facesets

New
structures:

PK_BODY_find_facesets_o_t
PK_BODY_find_facesets_r_t
PK_BODY_find_facesets_r_f
You can use PK_BODY_find_facesets to divide a body into a series of facesets
bounded by a given array of edges.

7.3.4 Identifying and deleting model details
New functions: PK_BODY_identify_details

PK_FACE_delete_facesets
Release Notes 45

. .Interface Changes
New
structures:

PK_BODY_identify_details_o_t
PK_FACE_delete_facesets_o_t
PK_detail_t
PK_identify_details_r_t
PK_identify_details_r_f

You can use PK_BODY_identify_details to return facesets in a body that
correspond to specified types of detail. You can use PK_FACE_delete_facesets
to remove as many of its given facesets as possible. These two functions can be
used in conjunction to provide a robust method of identifying and removing
certain types of detail from a body.

7.3.5 Double-sided tapering
New function PK_BODY_taper

New structure PK_BODY_taper_o_t

Parasolid’s tapering functionality has been extended to provide single-pass
double-sided tapering of a body. This function is particularly useful for mold
design applications that implement parted casting design.

7.3.6 Creating step offsets
Changed

structures
PK_BODY_offset_o_t
PK_FACE_offset_o_t
A new option, offset_step, has been added to these options structures. This
option creates step faces along any smooth boundaries between offset and non-
offset faces when calling PK_BODY_offset_2 or PK_FACE_offset_2.

7.3.7 Controlling face merging when replacing
faces

Changed
structure

PK_FACE_replace_surfs_o_t
PK_FACE_change_replace_o_t

New structure PK_replace_merge_t
It is now possible to replace the surfaces of multiple faces with a single surface
by passing the replacement surface only once. Previously, it needed to be
passed for every face being replaced.

Note: It is not currently possible to omit a chain of references either above or
below a parting line. This will be made possible in a future release of V13.
46 Release Notes

. .New Parasolid functionality
A new datatype in PK_FACE_replace_surfs_o_t lets you control the required
level of merging when adjacent faces become mergable as a result of a face
replace operation. No merging is performed for edges for which replacement
curves have been provided. Merging is recommended when adjacent faces are
to acquire identical surfaces.

7.3.8 Generating patches for filling holes in
sheets

Changed
function

PK_BODY_fill_hole

Changed
structures

PK_BODY_fill_hole_o_t
PK_fill_hole_fault_t
PK_fill_hole_method_t

Parasolid can now generate suitable faces to fill a hole using
PK_BODY_fill_hole, rather than require that your application supplies a suitable
sheet body. The boundary of the hole is maintained, and the filling geometry
meets the surrounding faces on the hole smoothly where possible.

7.3.9 Improvements to sweep
Changed
function

PK_BODY_make_swept_body

Changed
structure

PK_BODY_make_swept_body_o_t

New structure PK_BODY_sweep_fair_t

A new PK_BODY_make_swept_body option has been introduced to allow
internal improvement of “bad” sweep paths. This contains a single method that
removes twists from regions of paths that have rapidly changing curvature.

7.3.10 Simplifying geometry
New function PK_FACE_simplify_geom

New structure PK_FACE_simplify_geom_o_t
You can now simplify the B-geometry for a supplied list of faces and their edges.
Previously, it was only possible to simplify the B-geometry of an entire body.
Release Notes 47

. .Interface Changes
7.3.11 Applying derivative constraints to guide
wires

Changed
structure

PK_BODY_make_lofted_body_o_t

Derivative constraints can now be applied to guide wires when constructing a
lofted body using PK_BODY_make_lofted_body.

7.3.12 Multiple viewports
Changed

structures
PK_TOPOL_render_line_o_t
PK_render_viewport_t
You can now use multiple viewports with PK_TOPOL_render_line. The existing
single viewport functionality remains unchanged. An extra option is available to
let you specify an array of multiple viewports.

7.3.13 Smoothness tolerance between rendered
faces

Changed
structure

PK_TOPOL_render_line_o_t

You can now specify a tolerance on the smoothness between faces when
rendering edges. This is specified using the new options
is_edge_smoothness_tol and edge_smoothness_tol in
PK_TOPOL_render_line_o_t. If the angle between the normals of the relevant
faces is below edge_smoothness_tol, the edge is considered smooth and
indicated as such.

7.3.14 Support for Unicode part keys
Changed
functions

PK_SESSION_ask_frustrum
PK_SESSION_register_frustrum
PK_SESSION_ask_applio
PK_SESSION_register_applio

New functions PK_SESSION_ask_unicode
PK_SESSION_set_unicode

Changed
structures

PK_UCOPRD_f_t
PK_UCOPWR_f_t
PK_SESSION_applio_t

Parasolid now supports part keys in 16-bit Unicode form as well as the native
character set. To preserve runtime compatibility with older applications, the extra
fields in various Frustrum structures must be explicitly enabled via
48 Release Notes

. .New PK Interface tokens
PK_SESSION_set_unicode; otherwise the fields are ignored and the appropriate
receive/transmit functions will fail.

7.3.15 Support for transmitting parts in XML
format

Changed
structure:

PK_transmit_format_t
To support embedding XT files in XML data, the new token
PK_transmit_format_xml_c allows you to generate text part, partition, and
session files in which the < and & characters are escaped with < and &
respectively.

7.3.16 Setting the amount of memory requested by
Parasolid

New functions PK_MEMORY_ask_block_size
PK_MEMORY_set_block_size

A new function, PK_MEMORY_set_block_size, has been added which allows
you to set the smallest block of contiguous space that Parasolid requests when
acquiring workspace and modeling memory via FMALLO.
PK_MEMORY_set_block_size lets you specify a minimum block size between
130,776 bytes (the default) and 16,736,280 bytes. It can be called at any time,
whether or not the modeler is running.
PK_MEMORY_ask_block_size returns the current minimum block size.

The minimum block size can be returned to Parasolid's default by calling
PK_MEMORY_set_block_size with an argument of zero. When the modeler is
stopped the smallest block size is always returned to Parasolid’s default block
size.

7.4 New PK Interface tokens
PK_knot_type_t

Note: If the smallest block size is increased above the default of 130,776 bytes,
then the amount of memory permanently retained by Parasolid increases
accordingly.

PK_knot_smooth_seam_c 8506
Release Notes 49

. .Interface Changes
PK_boolean_region_t

PK_FACE_heal_t

PK_transmit_format_t

PK_blend_xs_plane_t

PK_render_viewport_t

PK_facet_degen_t

PK_local_status_t

PK_fill_hole_fault_t

PK_fill_hole_method_t

PK_blend_edge_update_t

PK_boolean_off_c 15949

PK_FACE_heal_yes_c 18085

PK_transmit_format_xml_c 18224

PK_blend_xs_rolling_ball_c 18490
PK_blend_xs_disc_c 18491
PK_blend_xs_isoparameter_c 18492

PK_render_viewport_array_c 20422

PK_facet_degen_average_parms_c 20582

PK_local_status_not_supported_c 21465

PK_fill_hole_not_smooth_c 22093
PK_fill_hole_too_complex_c 22094

PK_fill_hole_create_patch_c 22102

PK_blend_edge_update_0_c 22190
PK_blend_edge_update_1_c 22191
50 Release Notes

. .New PK Interface tokens
PK_blend_xs_shape_t

PK_BODY_sweep_fair_t

PK_comparison_t

PK_blend_identify_t

PK_detail_t

PK_blend_xs_shape_unset_c 22200
PK_blend_xs_shape_conic_c 22201
PK_blend_xs_shape_g2_c 22202
PK_blend_xs_shape_chamfer_c 22203

PK_BODY_sweep_fair_no_c 22210
PK_BODY_sweep_fair_twist_c 22211

PK_comparison_always_c 22220
PK_comparison_less_c 22221
PK_comparison_equal_c 22222
PK_comparison_greater_c 22223
PK_comparison_between_c 22224
PK_comparison_outside_c 22225
PK_comparison_never_c 22226

PK_blend_identify_within_c 22240
PK_blend_identify_exc_chain_c 22241
PK_blend_identify_inc_chain_c 22242
PK_blend_identify_max_chain_c 22243
PK_blend_identify_dependent_c 22244

PK_detail_any_c 22250
PK_detail_rubber_c 22251
PK_detail_hole_cyl_c 22252
PK_detail_hole_cyl_through_c 22253
PK_detail_hole_cyl_blind_c 22254
PK_detail_hole_cyl_closed_c 22255
PK_detail_blend_rb_const_r_c 22256
Release Notes 51

. .Interface Changes
PK_replace_merge_t

PK_offset_step_t

7.5 New PK interface error codes

7.6 Undocumented changes
This section describes changes that may be made to Parasolid at any given
release, but are not explicitly documented.

� The order in which entities are returned from a given PK function
� The underlying representation of faces and edges

PK_replace_merge_no_c 22300
PK_replace_merge_in_c 22301
PK_replace_merge_out_c 22302

PK_offset_step_no_c 22310
PK_offset_step_yes_c 22311

PK_ERROR_duplicate_name 5135
PK_ERROR_failed_to_make_outline 5136
PK_ERROR_failed_to_blend 5137
PK_ERROR_failed_to_offset 5138
PK_ERROR_failed_to_taper 5139
PK_ERROR_failed_to_transform 5140
PK_ERROR_journalling_on 5141
PK_ERROR_dbg_rprt_not_stopped 5142
PK_ERROR_dbg_rprt_not_started 5143

Warning: The following are not guaranteed to be consistent between different
versions of Parasolid, and may change between releases without notice. Your
application code should not rely on this behavior.
52 Release Notes

. .Changes to the Parasolid documentation
7.7 Changes to the Parasolid
documentation
In addition to documentation covering the changes and additions to Parasolid
functionality, the following changes have been made to the PK Interface
documentation that do not affect any existing code.

7.7.1 New manuals in the documentation set
Three new manuals have been added to the documentation set for Parasolid
V13.0. These are:

� PS/Workshop User Guide – a guide to using the PS/Workshop application
supplied with Parasolid.

� PS/Workshop Developer Guide – a guide to writing your own plu-in modules
for use with PS/Workshop

� Using the Example Application – a guide to the structure of the example
Parasolid-powered application whose source code is supplied with
Parasolid.

These manuals are all available from the home page of the Parasolid HTML
documentation set, and are available in PDF format by following the PDF files
link on the home page.

7.7.2 New face-face blending documentation
The documentation for Parasolid’s face-face blending functionality has been
completely rewritten. For more information, see Chapter 33, “Face-Face
Blending”, of the Functional Description.

7.7.3 Documentation for datatypes and structures
PK reference documentation is now available for all datatypes of the form
PK_CLASS_t and PK_CLASS_array_t. This means you can now click on any
Parasolid-typed function argument or option field in the HTML PK reference
documentation to read more information.

7.8 Undocumented PK functions

7.8.1 Debug functionality
Parasolid includes a number of PK_DEBUG functions that you can use to obtain
additional information when debugging calls to PK functionality. Documentation
Release Notes 53

. .Interface Changes
for these functions is provided in the PK Interface Programming Reference
Manual, but there is no description of functionality in the accompanying
Functional Description.

7.8.2 Approximate evaluations on geometry
The following functions are present within Parasolid to support applications with
legacy code. We do not recommend the use of these functions and as such, the
functions have not been included in the documentation.
� PK_BCURVE_eval_approx
� PK_BCURVE_set_approx
� PK_BCURVE_unset_approx
� PK_BSURF_eval_approx
� PK_BSURF_set_approx
� PK_BSURF_unset_approx
� PK_SPCURVE_eval_approx

To obtain the documentation or information regarding these functions, contact
Parasolid Technical Support.

7.8.3 Other undocumented functions
The following function is undocumented and should not be used in application
code. It is provided only for backward compatibility.

� PK_BODY_make_swept_profiles

Note: You should not include calls to any PK_DEBUG functions in a released
product.
54 Release Notes

8
8Environment

. .
8.1 Introduction
This chapter contains information on the platform specific operating systems and
compiler options used to build the Parasolid library.

Floating Point Underflow Traps

8.2 Intel NT
Parasolid was compiled, linked and tested on Windows NT version 4.0 with
Service Pack 5.
It will run under Windows NT version 4.0 or Windows 2000 on an Intel 80486,
Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon processor. At least
32 Mbytes of RAM are recommended.

Windows 95 and 98 are not officially supported, but Parasolid-based products
have been successfully created for them.

The C compiler used was Microsoft Visual C++ version 6.0 with Service Pack 4,
with the following options:

/MD /DWIN32 /Gs /QIfdiv- /O2 /Oy- /G6 /DNDEBUG
where:

Warning: Because Parasolid relies on ‘quiet underflow of denormals to zero’ it
is important that you do not, should the option be available, enable floating
point underflow traps.

/O2 Optimize for speed
/Gs Disable stack checking code
/MD Link with MSVCRT.LIB
/Oy- Use a stack frame
Release Notes 55

. .Environment
To improve performance, Parasolid for Intel has not been compiled with the /Op
option (Improve floating-point consistency). Applications that use 64-bit precision
(i.e. 80-bit real numbers) may therefore suffer from inconsistent results; therefore
we recommend the use of 53-bit precision (64-bit real numbers).

Also for performance reasons, Parasolid uses Visual C++’s default structure
packing (equivalent to the /Zp8 compiler option). Do not use the /Zpn compiler
option with any value of n except 8; if wrongly-packed structures are passed to
Parasolid, it will crash.

The Pentium 4 version of Parasolid was built with the Intel C/C++ compiler,
version 5.0.1, using the following options:

/MD /DWIN32 /DNDEBUG /Gs /QIfdiv- /O2 /Oy- /G7 /QxW /Qfp_port-
The options that differ from the Microsoft-compiled version are:

Running this version of Parasolid requires the Intel math library DLL
libmmd.dll.

/G6 Optimize for Pentium Pro/Pentium II/Pentium III. Parasolid will still
run on a Pentium or 80486.

/QIfdiv Prevents checking of parameters to floating point calculations for
values that trigger the ‘Pentium bug’.

Early versions of the Pentium processor had a fault which produced
incorrect results on some floating point calculations. Modern
Pentiums and all Pentium Pros/II/IIIs are free of this error. Checking
for the critical parameter values allows code to run on the obsolete
processors, but reduces Parasolid performance significantly.

Note: See also Section 8.9, “Linking NT run-time libraries”.

Option Description
/G7 Optimize for the Pentium 4.
/QxW Compile for the Pentium 4 and compatible NetBurst™

processors. The resulting code will not run on older Intel or AMD
processors.

/Qfp_port- Modify handling of conversions between double and float.
Parasolid does not perform these conversions, so dispensing
with the default handling has a small performance benefit. You
should not use this option in code which actually does such
conversions.
56 Release Notes

. .Linux
Attempting to run this version of Parasolid on a Pentium III, AMD Athlon, or other
processor that does not support the Pentium 4 instruction set will produce an
Illegal Instruction exception. The Parasolid DLL has additional version
information, allowing you to check that you are using the Pentium 4 version via
Windows Explorer (right-click the DLL file and choose Properties from the
shortcut menu).

You may find that your application requires more stack space when using the
Parasolid DLL. You can use the /stack parameter with the Microsoft linker to
increase the stack size from the default. Using a larger stack space does not
affect performance on P3 or earlier processors.

8.3 Linux
Parasolid was compiled, linked and tested on Red Hat Linux 6.0.

Currently, there is no shared library under Linux: only an archive library is
available.

The C compiler used was gcc version egcs-2.91.66 19990314/Linux (egcs-1.1.2
release), with the following options:

-O -fPIC
where:

8.4 HPPA HPUX
Parasolid was made using the operating system HP-UX 11.0 and C compiler
A.11.01. The compiler options used were:

+O3 +Olibcalls +Onolimit +Onomoveflops +Onoinitcheck +DA1.1
+DS2.0a +Oentrysched +Z -Ae +w2 +ESlit

where:

Note: The FCS release of the Pentium 4 version of Parasolid was compiled
using a beta-quality compiler, and is therefore a beta release.

-O optimization on
-fPIC generate position-independent code

+O<option> optimization options
+DA1.1 use PA_RISC 1.1 architecture instruction set
Release Notes 57

. .Environment
The 64-bit version of Parasolid is built with the same options, substituting +DD64
– which tells the compiler to produce 64-bit code – for +DA1.1 +DS2.0a.

To use the 64-bit version of Parasolid, all parts of your application code must be
compiled for 64-bit.

8.5 SPARC Solaris
Parasolid is supplied for both 32-bit and 64-bit versions of SPARC Solaris.
Parasolid was made using the operating system Solaris 5.7. The C compiler
used was Sun Workshop C 5.0 with the following options:

-xtarget=ultra -xdepend -x04 -xlibmil -K PIC -xstrconst
-D_POSIX_SOURCE -dalign -mt -Xa

For the 64-bit version, the following option is also used:
-xarch=v9

The options used have the following meaning:

+DS2.0a instruction scheduling optimized for PA2.0 architecture
+Z produce position independent object code
+ESlit place string literals in read-only memory
-Ae Extended ANSI mode

Note: On HP: we recommend that the -z parameter is used when linking, so
that null pointer accesses are detected.

Note: The -xarch option must come after the -xtarget option.

-xdepend do dependency analysis and restructuring of loops
-x04 optimization level 4
-xlibmil inline some library routines for performance
-K PIC generate position-independent code
-xstrconst put string literals in read-only memory
-dalign assume double data aligned appropriately for double word

load/store instructions
-mt required for multi-threading code
58 Release Notes

. .AXP OSF
The xtarget=ultra option generates code optimized for SPARC V8 machines
and uses the timing properties of the UltraSPARC chip. This may mean that code
will run slightly slower on the older SuperSPARC architecture. The Parasolid
libraries and KID, supplied with this release, were generated with this option.
These files will also run on pre- SPARC V8 machines, such as SPARC2, but with
a significant degradation in performance.
The 64-bit version does not run on pre-UltraSPARC machines, and requires the
64-bit Solaris kernel, which only runs as the default on UltraSPARC II and later
machines.

8.6 AXP OSF
Parasolid was made using the operating system OSF1 4.0 (the original name of
Tru64). The C compiler used was the Compaq C compiler V5.6-071 with the
options:

-migrate -O2 -G 0 -FASTMATH
where:

8.7 RS6000 AIX
Parasolid was made on an IBM RS/6000 workstation under the AIX 4.3 operating
system. The AIX compiler version 3.6.6.0 options used were:

-O -qlanglvl=ansi -qcheck=all:nobounds
-D_POSIX_SOURCE -qro -qtune=604

where:

-Xa ANSI C plus K&R C compatibility extensions
-xarch Setting this to v9 builds a 64-bit version, rather than a 32-bit

verson.

Note: To use this Parasolid library, all parts of your application code must be
compiled for 64-bit.

-migrate set default compiler options as for pre-v4.0 compiler
-O2 optimization level 2
-FASTMATH use faster versions of some math library routines
Release Notes 59

. .Environment
The shared libraries provided are .so files, rather than old-style .a files. You
may need to add the -brtl option to your link command line, to tell the linker to
look for .so libraries.

8.8 R4000 IRIX
Parasolid was compiled on the IRIX 6.5 operating system, using version 721 of
the IRIX C compiler. The compiler options used were:

-n32 -mips3 -O2 -KPIC -G 0 -LANG:vla=off
where:

If you have an earlier version of the IRIX C compiler, we recommend that you
upgrade to version 720 or later for work with n32 Parasolid.

-O optimization on
-qlanglvl=ansi ansi mode (not IBM RT compatibility mode)
-qcheck trap run-time exceptions except array bound checking
-D_POSIX_SOURCE use Posix standard headers
-qro put string literals in read only memory
-qtune=604 optimize for Power PC 604 processor

-n32 use newer 32 bit ABI (Application Binary Interface)
-mips3 use MIPS R4000 instruction set
-KPIC generate position-independent code
-O2 optimization level 2

Note: All parts of a program must be compiled with the same ABI, i.e. the
application code must also be compiled with -n32 to use this Parasolid library.

Parasolid is capable of using large amounts of virtual memory. This means that
the default configuration normally supplied with a Silicon Graphics workstation,
(which allows any process to take the whole of this allocated virtual memory),
is dangerous. Therefore, use the systune utility to examine and adjust the
system parameters rlimit_data_cur and rlimit_stack_cur, and
possibly rlimit_data_max and rlimit_stack_max, to ensure that any
given process cannot allocate all available virtual memory.
60 Release Notes

. .Linking NT run-time libraries
8.9 Linking NT run-time libraries
Microsoft Visual C++ provides several different versions of the C run-time library.
Unfortunately, the library to be used has to be selected before any code is
compiled, which restricts the freedom of library manufacturers and application
developers somewhat.
Parasolid is compiled with the /MD option, to use the dynamically-loaded version
of the C runtime library. It must be linked with the interface library msvcrt.lib,
and the run-time library DLL, msvcrt.dll must be available at run time.

The recommended method of building an NT application with Parasolid is to
compile the application code with /MD, and to link it with either pskernel.lib
or pscommunicator.lib (depending on whether you want the full Parasolid
DLL, or the cut-down Parasolid Communicator DLL) and msvcrt.lib. This will
use the DLL versions of Parasolid and the C run-time library.

You can link Parasolid statically to your application if you prefer: compile with /MD
and link with pskernel_archive.lib and msvcrt.lib. This produces a
single very large executable (Parasolid is more than 10Mb), which will require
msvcrt.dll to be available.
If your application absolutely has to be statically linked to the C run-time library,
then you could compile it with /ML and link with either pskernel.lib or
pscommunicator.lib (depending on whether you want the full Parasolid DLL,
or the cut-down Parasolid Communicator DLL) and libc.lib. Your application
will use the appropriate DLL version of Parasolid and the statically linked version
of the C library. msvcrt.dll must still be available at run-time, since the
Parasolid DLL will require it. While this method has worked in tests, we do not
recommend it, since it involves having two copies of the C run-time library in use
simultaneously. This wastes memory and could confuse the library code. So far,
Parasolid's frustrum architecture seems to have allowed this problem to be
evaded, but it is very poor practice to risk it.

It is not possible to link Parasolid statically to a LIBC-based application; this
would require all of Parasolid to be compiled with /ML. Overriding the library to
be used by Parasolid with the /NODEFAULTLIBRARY link parameter will not
work; some of the functions in the C run-time library have different names in the
static and dynamic versions. Linking with only LIBC produces missing symbols,
while linking with both produces duplicate symbols.

It is inadvisable to statically link an application compiled with /MDd to Parasolid.
This option tells the linker to use the debug version of the C run-time library. This
is not required for normal debug compilations; it is only needed for source-level
debugging of the run-time library itself. Under these circumstances, the link will
work, but running the program will produce assertion failures and access
violations. It seems to be necessary to compile an entire program with /MDd, if
any of it is compiled that way. Statically linking debug-compiled code without
Release Notes 61

. .Environment
/MDd to Parasolid works without problems; using /MDd code with a DLL
Parasolid also works.
62 Release Notes

	Table of Contents
	Introduction
	1.1 Introduction
	1.2 This Document
	1.3 Platform-specific information

	The Product
	2.1 Release Contents
	2.2 Identification
	2.3 Compatibility
	2.3.1 Filename extensions on NT

	Installing Parasolid
	3.1 Disk Space Requirements
	3.1.1 Software
	3.1.2 Documentation

	3.2 Copying files to a local disk
	3.2.1 Using the installer (Intel NT only)
	3.2.2 Copying files manually
	UNIX or Linux

	3.3 Documentation
	3.3.1 Viewing the documentation
	3.3.2 Using the PDF documentation
	3.3.3 Copying the documentation to a local hard disk or intranet
	3.3.4 Minimizing disk requirements for documentation

	3.4 Additional CDs

	Parasolid Release Area
	4.1 Contents of the Release Area
	4.1.1 Privileges
	4.1.2 The ‘base’ directory
	The ‘lispdata’ sub-directory
	The ‘schema’ sub-directory
	The ‘dll’ sub-directory (NT)
	The ‘shared_object’ sub-directory (UNIX)

	4.1.3 The ‘base_alternative’ directory
	The ‘schema’ sub-directory
	The ‘dll’ sub-directory (NT)

	4.2 Explanation of files
	4.2.1 Files in ‘base’
	Parasolid library
	PK and KI interface header files
	Ifails and tokens include files
	Parasolid test code
	Frustrum test code
	Frustrum source code and library
	Frustrum library command file
	Frustrum link and Parasolid link command files

	4.2.2 The Kernel Interface Driver (KID)
	4.2.3 Schema files
	4.2.4 Finding shared libraries
	UNIX
	NT

	Using Parasolid
	5.1 Parasolid
	5.2 Schema Files
	5.3 Frustrum
	UNIX
	NT

	5.4 Kernel Interface Driver (KID)
	5.4.1 Specifying environment variables
	UNIX
	NT

	5.4.2 Running KID
	5.4.3 KID Graphical Device Drivers
	Opening a Graphics Window
	Null graphics device
	Graphics Enquiry

	Functional Enhancements
	6.1 Functional enhancements since V12.1
	6.1.1 Identifying blend faces
	6.1.2 Identifying facesets
	6.1.3 Identifying and deleting details in bodies
	6.1.4 Double-sided tapering
	6.1.5 Advanced capping in edge blending
	6.1.6 Generating patches for filling holes in sheets
	6.1.7 Applying derivative constraints during lofting
	6.1.8 Improvements to Y-blend functionality
	6.1.9 Improvements to face-face blending
	6.1.10 Specifying blend radius during face change operations
	6.1.11 Enhanced support when replacing the surfaces of faces
	6.1.12 Creating step offsets
	6.1.13 Improvements to sweep
	6.1.14 Improvements to clash detection
	6.1.15 Simplifying geometry
	6.1.16 Removing duplicate sheets when sewing
	6.1.17 Smoothness tolerance between rendered faces
	6.1.18 Control of coincident edges in booleans or sectioning
	6.1.19 Attaching curve copies when sharing not possible
	6.1.20 Creating bodies with curves in different partitions
	6.1.21 Multiple viewports
	6.1.22 Parameters for facet vertices and degeneracies
	6.1.23 Adding change events to bodies to the bulletin board
	6.1.24 Support for Unicode part keys
	6.1.25 Support for transmitting parts in XML format
	6.1.26 Setting the amount of memory requested by Parasolid

	6.2 Known issues in this release
	6.2.1 Pentium 4 issues
	6.2.2 HP-UX 64-bit issues

	Interface Changes
	7.1 Introduction
	7.2 PK functions and typedefs with changes in behavior
	7.2.1 Specifying blend radius during face change operations
	7.2.2 Errors during face change operations
	7.2.3 Changes to blending algorithms
	7.2.4 Errors during outline curves operations
	7.2.5 Invalid matched regions
	7.2.6 Control of coincident edges in booleans or sectioning
	7.2.7 Clashing faces
	7.2.8 Attaching curve copies when sharing not possible
	7.2.9 Creating bodies with curves in different partitions
	7.2.10 Creating periodic B-curves
	7.2.11 Removing duplicate sheets when sewing
	7.2.12 Parameters for facet vertices and degeneracies
	7.2.13 Adding change events to bodies to the bulletin board

	7.3 New Parasolid functionality
	7.3.1 Improvements to face-face blending
	7.3.2 Identifying blend faces
	7.3.3 Identifying facesets
	7.3.4 Identifying and deleting model details
	7.3.5 Double-sided tapering
	7.3.6 Creating step offsets
	7.3.7 Controlling face merging when replacing faces
	7.3.8 Generating patches for filling holes in sheets
	7.3.9 Improvements to sweep
	7.3.10 Simplifying geometry
	7.3.11 Applying derivative constraints to guide wires
	7.3.12 Multiple viewports
	7.3.13 Smoothness tolerance between rendered faces
	7.3.14 Support for Unicode part keys
	7.3.15 Support for transmitting parts in XML format
	7.3.16 Setting the amount of memory requested by Parasolid

	7.4 New PK Interface tokens
	7.5 New PK interface error codes
	7.6 Undocumented changes
	7.7 Changes to the Parasolid documentation
	7.7.1 New manuals in the documentation set
	7.7.2 New face-face blending documentation
	7.7.3 Documentation for datatypes and structures

	7.8 Undocumented PK functions
	7.8.1 Debug functionality
	7.8.2 Approximate evaluations on geometry
	7.8.3 Other undocumented functions

	Environment
	8.1 Introduction
	Floating Point Underflow Traps

	8.2 Intel NT
	8.3 Linux
	8.4 HPPA HPUX
	8.5 SPARC Solaris
	8.6 AXP OSF
	8.7 RS6000 AIX
	8.8 R4000 IRIX
	8.9 Linking NT run-time libraries

