Parasolid V13.0

PS/Workshop V2.1 Developer Guide

June 2001

I mportant Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc.
© Copyright 2001 Unigraphics Solutions Inc. All rights reserved

Restricted Rights Legend: This commercial computer software and related documentation are
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable.
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the
terms of the applicable license agreement. Any copying of this documentation, except as permitted
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

”I,I'y,)ap”ics Cambridge CB2 10P

Tel: +44 (0)1223 371555

sﬂlﬂliﬂﬂsm Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com

Trademarks

Parasolid is a trademark of Unigraphics Solutions Inc.

HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.

IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.
OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual C/C++ and Window NT are registered trademarks of Microsoft Corp.

Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.

All other trademarks are the property of their respective owners.

Table of Contents

1 Introduction e e e 5

1.1 Introduction 5

1.2 Installation 6

1.3 PS/Workshop SDK directory structure 6
1.4 The PS/Workshop module wizard 7

2 A Short Tutorial 9

2.1 Introduction 9

2.2 Creating a new project 9

2.3 Adding a Hollow menu item 10

2.4 Adding a handler for the OnCommand event 12
2.5 Writing code to perform the hollow 14

3 Using COM in PS/Workshop 17

3.1 Whatis a COM object? 17
3.2 Creating a COM object 18
3.2.1 Creating a COM object indirectly 18
3.2.2 Creating a COM object directly 18
3.3 Using COM interfaces 19
3.3.1 Calling public methods 19
3.3.2 Testing for success or failure 20
3.4 Managing the lifetime of COM objects 20
3.4.1 Managing interfaces in method arguments 21
3.4.2 IUnknown 22
3.4.3 ATL smart interface pointers 23
3.5 Converting between data-types 23
3.5.1 Converting from BSTR to CString 24
3.5.2 Creatinga BSTR 24

4 Event Handling Within A Module 25

4.1 General message handling 25
4.2 Handling menu command events 27

5 Module Structure 31
5.1 CAddinimpl 32

PS/Workshop V2.1 Developer Guide 3

Table of Contents

5.2 CXXXApp 32

5.2.1 CXXXApp Functions 32
5.3 CAddonMain 33

5.3.1 Summary 33

5.3.2 CAddonMain functions 34
5.4 CAddonDoc 37

5.4.1 Summary 37

5.4.2 CAddonDoc functions 39
5.5 CAddonView 44

5.5.1 Summary 44

5.5.2 CAddonView functions 44

6 The PS/Workshop Interfaces 47
7 Adding a New Menu Item to PS/Workshop 51
8 Registering Handlers for Different Filetypes 53
9 The Draw List 55

9.1 Specifying which parts to render 55
9.2 Setting drawing options 56

A Interface Functions T 57

B Known Issues @ i it 129

4 PS/Workshop V2.1 Developer Guide

|ntroduction KA

1.1 | ntroduction

This manual provides a complete guide for developers who want to write their
own modules for use with PS/Workshop. It contains the following chapters:

B Chapter 1 (this chapter) introduces you to the manual, tells you how to install
the PS/Workshop SDK, and introduces you to the PS/Workshop AppWizard
that is installed with the SDK.

B Chapter 2, “A Short Tutorial”, provides a step-by-step example that you can
work through to gain a basic understanding of the processes involved in
writing your own modules. It explains how to create a simple module using
the PS/Workshop AppWizard.

B Chapter 3, “Using COM in PS/Workshop” provides a brief introduction to
COM, and the way that it is used in PS/Workshop.

B Chapter 4, “Event Handling Within A Module” explains how events and
messages are passed from PS/Workshop to a module, and how they should
subsequently be handled by the module.

B Chapter 5, “Module Structure” describes the structure of the default classes
and functions available in a module created using the PS/Workshop
AppWizard.

B Chapter 6, “The PS/Workshop Interfaces” is an introduction to the COM
interfaces in PS/Workshop that can be used by your module to access
PS/Workshop functionality.

B Chapter 7, “Adding a New Menu Item to PS/Workshop” explains how you can
add new menus and menu commands to the PS/Workshop menu bar, to give
users access to the functionality in your module.

B Chapter 9, “The Draw List” explains how you can control which parts of a
document are displayed, and what options are used to display them.

B Chapter 8, “Registering Handlers for Different Filetypes” describes how to
modify PS/Workshop to load and save files in formats other than the default
file formats supported by the core version of PS/Workshop itself.

B Appendix A, “Interface Functions” is a complete reference for the COM
interfaces provided by PS/Workshop that you can use in a PS/Workshop
module.

B Appendix B, “Known Issues” describes miscellaneous issues relevant to
developing modules for use in PS/Workshop.

This manual assumes that you are familiar with the functionality in the core
version of PS/Workshop, as well as the mechanism for loading and unloading
PS/Workshop modules. For more details, see the PS/Workshop V2 User Guide.

PS/Workshop V2 User Guide 5

Introduction

1.2 | nstallation

In order to develop PS/Workshop modules, you need to install the PS/Workshop
SDK (Software Development Kit). This needs to be installed when you install
PS/Workshop itself, by choosing the appropriate option in the installation wizard.
The SDK is installed by default for the “Typical” configuration, so if you installed
PS/Workshop with this configuration, you already have the SDK.

If you do not have the SDK installed, run the installation again and ensure that
the option is checked.

1.3 PS/Workshop SDK directory structure

The PS/Workshop SDK consists of the following files and folders:

Folder Files

<I NSTALL_DI R> PSWor kshopAddonW zar d. awx: The Visual
Studio PS/Workshop project wizard. See
Section 1.4 for more details.

PSWr kshop. t | b: Type library definitions for
PS/Workshop.

<I NSTALL_DI R>\ Hel p The help files for PS/Workshop:
B PSWr kshopUser Gui de. pdf The
PS/Workshop User Guide in PDF format.

B PSWr kshopDevel opnent Gui de. pdf
This document in PDF format.

<I NSTALL_DI R>\ Modul es Source code and object releases for the sample
PS/Workshop modules

B Anal yse. dl | A module that performs a
number of analytical operations on the
parts in a document

B Edge. dl | Amodule that demonstrates the
edge blending functionality of Parasolid

<I NSTALL_DI R>\ Modul es\ Sour ce Contains the source code for a number of
example modules.

<I NSTALL_DI R>\ Modul es\ Sour ce\ | The source code for the edge blending module.
Edge Bl end

<I NSTALL_DI R>\ Mbdul es\ Tut ori al | The full source code for the tutorial module
described in Chapter 2, “A Short Tutorial”.

6 PS/Workshop V2 User Guide

1.4

The PS/Workshop module wizard

The example modules provided were written and compiled using Microsoft Visual
Studio C++ 6.0 with Service Pack 4.0 installed.

The PS/Workshop module wizard

When you install the SDK, a module wizard is copied to the Visual Studio
directory. This wizard produces a module that contains all the code for
successfully initialising the module as well as adding a new menu and submenu
to PS/Workshop. It also sets up and registers a stub function that is called from
the menu.

The module wizard is shown as “PSWorkshop AppWizard” in the Projects tab of
the New dialog in Visual Studio.

If you do not see this wizard, copy
<| NSTALL_DI R>\ PSWor kshopAddonW zar d. awx to
\ Common\ MSDev98\ Tenpl at e under the Visual Studio directory.

Note: Itis strongly advised that you use the PS/Workshop AppWizard to create
your own modules. The wizard provides your module with basic functionality
that will save you development time. In addition, some parts of this manual
assume that your module has the same overall structure and functionality as
that provided by the wizard.

PS/Workshop V2 User Guide 7

I_Introduction

8 PS/Workshop V2 User Guide

A Short Tutoria P

2.1 | ntroduction

This chapter contains a tutorial that guides you through the various stages
required to implement a simple module in PS/Workshop. If you follow each step
in the tutorial, you will create a module that hollows a given body in
PS/Workshop.

In this tutorial you will learn how to:

B Create a new base project (Section 2.2)

Add a new menu and menu item to PS/Workshop (Section 2.3)
Add a handler for the new menu item (Section 2.4)

Write code to hollow a body (Section 2.5)

Note: If you have installed the PS/Workshop SDK, the source code for each
step of this tutorial is installed in the folder
<I NSTALL_DI R>\ Modul es\ Tut ori al

Creating and displaying a dialog box is beyond the scope of this project. If you
are interested in doing this, look at the example edge blending module provided.
Alternatively, the MSDN documentation contains a number of tutorials that cover
producing and displaying dialogs.

2.2 Creating a new project

Create a new template project using Visual Studio as follows:

B Choose File > New and click on the Projects tab
B Select the PS/Workshop AppWizard icon

B Type Tutori al inthe Project name field

B Click OK

Compile the project and make sure that the module loads into PS/Workshop
correctly:

B Start PS/Workshop and open a document
B Check that a new Tutorial Debug menu, and an associated menu
command, appear on the PS/Workshop menu.

PS/Workshop V2.1 Developer Guide 9

A Short Tutorial

The Tutorial module is also listed in the Available Add-Ins list of the Add-Ins tab
of the PS/Workshop Options dialog. You must close any open documents in
PS/Workshop before opening the Options dialog in order to see this tab.

Note: On compilation you may receive the warning “/DELAYLOAD:pskernel.dll
ignored; no imports found from pskernel.dll”. This warning can be ignored as

the module currently doesn't access any Parasolid functionality. See Chapter
B, “Known Issues” for more information.

2.3 Adding a Hollow menu item

In this section you change the name of the default menu added by the template,
and add a new Hollow command to it.

Using the ClassView in Visual Studio, locate the StartModule function within the
CAddonMain class. This function is called after a module is successfully loaded
and is responsible for initialising the module and adding any required menus or
menu items to PS/Workshop.

Within StartModule a call is made to the PS/Workshop interface function
AddMenultem which adds a menu item to PS/Workshop. AddMenultem contains
the following arguments:

| PSWAAdI n *pAddl n,
BSTR CommandNane,
| ong Command| D,
PSW Menu_Mode node

The CommandNane argument controls which menu to add the item to; as well as
what text should appear on any sub-item. In order to create a new Qperations
menu with a Hollow command you must modify the following line within
StartModule:

CConmBSTR bstr Menul t em
(COLESTR(" &Tut ori al Debug\ nMy NewCommand"));

should become

CConBSTR bstr Menul t em
(OLESTR(" &per ati ons\ n&Hol | ow'));

10 PS/Workshop V2.1 Developer Guide

Adding a Hollow menu item

Note: It is a good idea to use a CComBSTR smatrt pointer to encapsulate any
BSTR, as this automatically frees the resources of the BSTR when it goes out
of scope. For further details see Section 3.5.2, “Creating a BSTR”.

The Command| D argument specifies the ID that is passed back to the module if
the menu item has been chosen. This ID should be unique within a module. You
need to add a new ID to associate with the new Hollow command.

In Visual Studio, define an ID called | D_ON_HOLLOWas follows:

B Choose View > Resource Symbols
B Click New in the Resource Symbols dialog
B Type | D_ON_HOLLOWin the Name field of the New Symbol dialog

The node argument controls the type of menu to add to PS/Workshop. This can
have one of the following values:

Value Description

PSW_Menu_App |Display the menu item at the application level (i.e. when
there are no documents open in PS/Workshop)

PSW_Menu_Doc | Display the menu item at the document level (i.e. only
when there are one or more documents open in
PS/Workshop)

For the purposes of this example, leave the default value of node:
PSW_Menu_doc.

Change the call to AddMenultem from:

return m pAppl nt erface->AddMenul tem(pApp, bstrMenultem
| D_ON_MY_COWMAND, PSW Menu_Doc);

to:

return m pAppl nterface->AddMenul tem(pApp, bstrMenultem
| D_ON_HOLLOWN PSW Menu_Doc) ;

Finally, compile and run the code, and open a document in PS/Workshop. You
should see a new Operations menu on the PS/Workshop menu that contains a
Hollow command. If you choose Operations > Hollow, nothing happens yet,
since you have not defined a function to handle this event.

PS/Workshop V2.1 Developer Guide 1

A Short Tutorial

The full source code for CAddonMain::StartModule should be as follows:

HRESULT CAddonMai n:: Start Modul e(| PSWAAdI n* pApp)

ATLASSERT(pApp);
HRESULT hr = E_FAIL;
CConmBSTR bst r Menul t en{ OLESTR(" & per at i ons\ n&Hol | ow'));

return mpAppl nterface->AddMenul tem(pApp, bstrMenultem
| D_ON_HOLLOWN PSW Menu_Doc) ;

}

For more information about adding menu items to PS/Workshop, see Chapter 7,
“Adding a New Menu Item to PS/Workshop”.

2.4 Adding a handler for the OnCommand
event

So far you have created an Operations menu containing a Hollow command. If
you choose Operations > Hollow, this calls the IPSWEvents::OnCommand
function on the module with the ID which you passed to the
IPSWApp::AddMenultem function (ID_ON_HOLLOW).

By default, a PS/Workshop module routes this message from the CAddinimpl
class to the CAddonMain::OnCmdMsg function, which can either handle the
event itself or call CAddonDoc::OnCmdMsg. This function in turn can either
handle the event or pass it to CAddonView::OnCmdMsg to handle. The class you
choose to handle the event depends on the functionality you want for the
command.

In this case, to make the Hollow command functional, you must add a handler at
the document level —i.e. the CAddonDoc class — since the command performs a
hollow operation that acts on the parts in a document.

For a complete description of event handling, see Chapter 4, “Event Handling
Within A Module”. You may find it useful to set a number of break points in the
code and debug the module to better understand the event handling process.

Add the following private function to the CAddonDoc class using the Visual
Studio ClassWizard (View > ClassWizard).

12 PS/Workshop V2.1 Developer Guide

Adding a handler for the OnCommand event

HRESULT CAddonDoc: : OnHol | ow()

{
Af xMessageBox (" CAddonDoc: : OnHol | ow reached");
return S _CX;

For the time being, CAddonDoc::OnHollow simply displays a message when it is
called. Section 2.5 describes how to add code that performs the hollow operation
itself.

The ID of the new command is passed to CAddonDoc::OnCmdMsg as an
argument. The OnCmdMsg function uses a switch statement to check whether it
should handle the command and which function to route it to. In order to correctly
handle the hollow command you need to modify this switch statement such that
when it receives the ID_ON_HOLLOW ID it will call the CAddonDoc::OnHollow
handler function.

To do this, add the following case into the switch statement:

switch(nlD)

{
case | D_ON_My_COMVAND:
OnMyFunction();

hr = S K
br eak;
case | D ON HOLLOW /1 Qur newy added case statenent
OnHol | ow() ;
hr = S OK;
br eak;
defaul t:
br eak;

Compile and run the code again, and open a document in PS/Workshop .
Choose Operations > Hollow to display the message box and confirm that
CAddonDoc::OnHollow has been successfully called.

PS/Workshop V2.1 Developer Guide 13

A Short Tutorial

Writing code to perform the hollow

You now have the framework of the hollow operation in place, and you can add
code to perform the hollow itself. To do this you need to complete the following
steps:

B Obtain any selected faces from the body (these are used as pierce faces for
the hollow)

Create a partition mark that you can rollback to if the hollow fails

Call PK_BODY_hollow_2, using the selected faces as pierce faces

Check for any errors and roll back to before the hollow if necessary

Force an update of PS/Workshop if necessary

To perform the hollow operation, add the following code in place of the body of
the CAddonDoc::OnHollow function.

/1 set our return argunment
HRESULT hr = E_FAIL;

/1 Changes the cursor to an hourglass for the duration of the
/1 function to show the user that sonething is happening
CWai t Cur sor cursor;

The nenber variables mnParts and m pkParts contain copi es of
the parts in the associ ated PS/ Wrkshop docunment. These
variables are automatically initialised and should be kept up
to date with any changes in the nunber of parts in the
docunent

~———
~—— — —

/1l In this case if we have no parts in the docunent then there
/1 is no point continuing

if (mnParts == 0)

Af xMessageBox (" CAddonDoc: : OnHol | ow->No parts to hollow");
return S_CX;

// Clear the last error. This is for our rather sinplistic error
/1 handling routine which is used later on

PK_ LOG CAL_t pk_was_error = PK LOG CAL_true;

PK_ERROR sf_t pk_error_sf;

PK_ERRCR cl ear _| ast(&pk_was_error);

/1 Obtain any selected faces in the docunent - these will be

/! pierced during the holl ow operation.

i nt nFaces = 0;

PK FACE t* faces = NULL;

// Get the nunber of selected faces

hr = m_pSel ecti onLi st->get _Count(PK_CLASS face, &nFaces);
if (FAILED(hr))

return hr;

/1 now get the actual selected faces
if (nFaces)

/1 allocate our array to store the selected faces in

14

PS/Workshop V2.1 Developer Guide

Writing code to perform the hollow

faces = new PK FACE t[nFaces];

if (faces == NULL) /1 check if the allocation succeeded
return E_OUTOFMEMORY;

/'l there are two nethods to obtain the faces required:

/1 Call the | PSWsel ectionList->get_Itemfunction for each face

/1 this has a performance di sadvantage in that it nakes n

/| separate calls to PS/Wrkshop to get all the faces

for (int i =0; i < nFaces; i++)

hr =
m _pSel ectionLi st->get_Iten{ PK _CLASS face, i, &faces]

|)f (FAILED(hr))

/1 delete our array
delete [] faces;

return hr;
}
}
/1 Alternatively, get all the faces in one call to PS/ Wrkshop.
/1l For this we need to obtain the enunerator for the I|ist
/'l (1 PSWEnunBel ecti onLi st).
/*

CConPt r <| PSVEnunSel ecti onLi st > pEnunSel = NULL;
hr = m pSel ecti onLi st->get __NewEnum(PK_CLASS face,
(1 Unknown**) &Enunsel);

if (FAILED(hr))

/1 free our array and return
delete [] faces;
return hr;

—

/1 we can now get all the faces at one tine
hr = pEnunSel - >Next (nFaces, faces, NULL);
if (FAILED hr))
{

delete [] faces;

return hr;

}
*/

// create a mark to rollback to in case the hollow fails
PK_PMARK t prmark = PK_ENTITY_nul | ;
m _pRol | back- >MakePMar k(&mark);

/1 set the options for the hollow (here we are sinply using the
/1 defaults).

PK_BODY_hol | ow_o_t hol | owOpt i ons;

PK_BCDY_hol | ow_o_mn(hol | owOptions);

ill in any faces to be pierced

I
nFaces > 0)

hol | owOpt i ons. n_pi erce_faces = nFaces;
hol | owOpt i ons. pi erce_faces = faces;

/1 and the return argunents
PK_TOPCL_track_r_t tracking;

PS/Workshop V2.1 Developer Guide 15

A Short Tutorial

PK_ TOPOL | ocal r_t results;

/1 finally call the function - here we are assuming that we only
/1 have one body in the docunent

PK_BCDY_hol | ow_2(m pkParts[0], 0.001, 1.0e-6, &holl owOptions,
& racking, &esults);

/1 Now we check to see if the previous function succeeded or not
PK_ERRCOR ask_| ast(&pk_was_error, &pk_error_sf);
if(PK LOGA CAL_true == pk_was_error)

~

CString pk_err_str = pk_error_sf.function;
pk_err_str = pk_err_str + "\n returns \n";
pk_err_str = pk_err_str + pk_error_sf.code_t oken;
Af xMessageBox(pk_err_str, MB_OK | MB_I CONSTCP);
if (pk_error_sf.severity !'= PK ERROR nmld)

/1 Then the nmpdel may be corrupted and we need to roll back
m pRol | back->Rol | backTo(&pmark, 1);
hr = E FAIL;

}
// W also need to check the result structure to see if the
// function succeeded
else if (results.status != PK |ocal _status_ok_c)
{
/1 Then again we need to rollback because it has failed
Af xMessageBox (" Hol | ow Fail ed");
m _pRol | back->Rol | backTo(&pmark, 1);
hr = E_FAIL;

el se

{
/1 The hol | ow succeeded so force an update of PS/ Wrkshop
m pDocl nt er f ace- >Updat e(TRUE);
/1 Delete the created pmark
m pRol | back- >Del et ePMark(pmark);
hr = S K
}

/1 Now we can free up some menory

/1 our faces array
if (nFaces > 0)

nFaces = 0;
delete [] faces;
faces = NULL;

}

/1 Qur return argunents fromthe holl ow
PK_TOPOL_track_r_f(&racking);
PK_TOPCL_| ocal _r_f(&esults);

// And finally return the result of the holl ow operation
return hr;

16

PS/Workshop V2.1 Developer Guide

Using COM in
PS/\Workshop &

What is a COM object?

COM (Component Object Model) is a binary method for defining objects whose
functionality can be used by an application regardless of the source code
language in which either the object or the application are written. It allows code
to be shared at a binary level rather than a source code level. A COM object is a
binary object (usually implemented as a DLL) that exposes a set of methods that
an application such as a PS/Workshop module can call.

Applications interact with COM objects in a similar way to C++ objects, although
there are some clear differences:

B COM objects enforce strict encapsulation. The public methods in a COM
object are grouped into one or more interfaces. To use a method, you must
first create the COM object and then obtain the interface that contains the
method from that object.

B COM objects must be created using COM-specific techniques, as described
in Section 3.2, “Creating a COM object”.

B The lifetime of COM objects must be controlled using COM-specific
techniques, as described in Section 3.4, “Managing the lifetime of COM
objects”.

B Each COM object has a unique registered identifier that is used to create the
object. COM automatically loads the correct DLL. You do not need to
explicitly load the DLL or link to a static library in order to use a COM object.

PS/Workshop exposes a number of interfaces to provide access to its core
functionality. The use of COM means that you do not have to develop your
module code in the same language that PS/Workshop was itself developed in,
though examples throughout this manual are given in C++.

A complete reference to the interfaces provided by PS/Workshop can be found
in Appendix A, “Interface Functions”.

Further details about some of the concepts and use of COM can be found from
the following sources:

B Inside COM by Dale Rogerson (Microsoft Press; 1997; ISBN: 1572313498)
B Inside Distributed COM by H. Eddon and G. Eddon (Microsoft Press; 1998;
ISBN: 157231849X)

PS/Workshop V2.1 Developer Guide 17

Using COM in PS/Workshop

3.2 Creating a COM object

In C++, objects can either be

B created on the heap using the new operator, in which case their lifetime is
controlled when the requisite del et e operator is called, or

B defined on the stack, in which case their lifetime is controlled by the scope of
the object.

By contrast, COM objects are created either

B indirectly, using a creation method exposed by a particular interface, or
B directly, using the function CoCreatelnstance.

The first of these is the simplest approach, and is the one that you should use for
the vast majority of interfaces exposed for PS/Workshop. The exception to this is
the IPSWDrawOpts interface, which can be created directly in order to specify a
set of drawing options to pass to the IPSWDrawList interface.

3.2.1 Creating a COM object indirectly

Creating a COM object using a public object creation method is straightforward.
You pass the method the address of an interface pointer, and the method then
creates the object and returns an interface pointer. When you use this approach,
the type of interface that is returned is defined by the method, though you can
often specify a number of things about how the object should be created.

The following example shows how to create a COM object indirectly:

| PSWApp* pApp; /1 address of interface pointer
| PS\WWDoc* pDoc = NULL; // returned interface pointer

HRESULT hr = pApp- >OpenNewDocunent (&Doc) ;
/1 call to object creation nethod

The pointer to the new interface is contained in pDoc. You can use that pointer to
access any of the interface’s methods, as described in Section 3.3.1. The result
of the call to the method is contained in hr, which can be tested for success or
failure, as described in Section 3.3.2.

3.2.2 Creating a COM object directly

To create a COM object directly, you must do the following:

B |nitialize COM using the function Colnitialize
B Create the object using the function CoCreatelnstance
B Uninitialize COM using the function CoUninitialize

18 PS/Workshop V2.1 Developer Guide

Using COM interfaces

3.3

If you create a new module using the PS/Workshop AppWizard, then initializing
and uninitializing COM is handled by the supplied framework.

In addition, you need to know the Class ID (CLSID) of the object you want to
create. If this CLSID is not publicly available, you cannot create the object
directly.

The following example shows how you can create an IPSWDrawOpts object,
using ATL smart interface pointers, as described in Section 3.4.3.:

CConPt r <| PSWDr awOpt s> pDrawOpts = NULL;
if (FAILED(pDrawOpts. CoCreatel nstance(CLSI D_PSWDr awQpts))
)

{
/1 recovery code
}

This creates a single uninitialized object of the class associated with the specified
CLSID.

Using COM interfaces

3.3.1

To simplify the use of COM interfaces in PS/Workshop, as much of the COM
complexity as possible is hidden behind the scenes. If you use the PS/Workshop
AppWizard to create a new module, supporting code that you do not need to use
explicitly is placed in areas of the source code that you do not need to alter. If you
do not use the PS/Workshop AppWizard, then you can find the definitions of the
PS/Workshop interfaces using the type library supplied in the PS/Workshop
installation directory.

Calling public methods

Unlike C++, you do not access a COM object's methods directly. Instead, you
must obtain a pointer to the interface that exposes the method. To call the
method, you use essentially the same syntax that you would to invoke a pointer
to a C++ method. For example, to invoke the IPSWDrawOpts::Reset method,
you would use the following syntax.

| PSVDr awOpt s * pDr awOpt s;

bb'rawOpts->Reset(.)

PS/Workshop V2.1 Developer Guide 19

Using COM in PS/Workshop

3.3.2 Testing for success or failure

All public methods exposed by an interface return a 32-bit integer called an
HRESULT. For the interfaces exposed by PS/Workshop, this is used to indicate
the return status of the method. Success codes are given names with an S_
prefix (such as S_OK), and failure codes are given names with an E_ prefix (such
as E_FAIL). Specific error codes are documented with the reference
documentation for each method. General error codes are taken from the
standard set defined in W nerror. h.

The fact that methods may return a variety of success or failure codes means
that you need to be careful when testing whether a call to a given method has
been successful or not. If you need detailed information about the outcome of a
call to a method, you need to test against individual return values. However, if
you want to implement a robust method for detecting the general success or
failure of a method call, you should use the following two macros, which are
defined in W nerror. h:

B The SUCCEEDED macro returns TRUE if the method call was successful,
and FALSE otherwise.

B The FAILED macro returns TRUE if the method call failed, and TRUE
otherwise.

These macros give you a simple way of testing for general success or failure, as
shown in the following example:

i f (FAI LED(hr))
/1 Code to handle failure
el se

/| Code to handl e success

3.4 M anaging the lifetime of COM objects

When an object is created, the system allocates the necessary memory
resources. When that object is no longer needed, you should ensure that the
resources it has used are freed up once again. To ensure this happens, each
object is responsible for deleting itself. However, COM does not let you destroy
objects directly, because a given COM object may be used by several
applications; if one application destroyed an object, any other applications using
that object would fail. Instead, the lifetime of a COM object is managed using a
reference count system.

20 PS/Workshop V2.1 Developer Guide

3.4.1

Managing the lifetime of COM objects

An object’s reference count is the number of times one of its interfaces has been
requested by an application. Each time an interface is requested, the reference
count is incremented by 1. When an application has finished with an interface, it
releases it, decrementing the reference count by 1. Once an object’s reference
count has reached zero, it is removed from memory.

Management of an object’s lifetime is done primarily through an interface called
IlUnknown, or through the object creation methods exposed by other interfaces.
All COM interfaces must inherit the IUnknown interface in order to manage the
lifetime of objects they are exposed in.

Incrementing an object’s reference count is done in one of the following ways:

B Calling a public object creation method increments that object’s reference
counter automatically.

B Calling lUnknown::Querylnterface to return an interface increments the
object’s reference counter if the call was successful.

B Calling lUnknown::AddRef increments the object’s reference counter. You
should call this explicitly whenever you obtain a new interface pointer

Decrementing an object’s reference count is done by calling IUnknown::Release.
You must release all interface pointers, regardless of how the object reference
counter was incremented. Using ATL smatrt interface pointers, as described in
Section 3.4.3, can help to make this task simpler.

Performance issue: Failing to release an interface is one of the most common
ways of creating memory leaks in an application that uses COM interfaces. You
must ensure that reference counting is handled properly in your PS/Workshop
modules, since PS/Workshop will not exit correctly if the reference count for
any of its interfaces is not zero.

Managing interfaces in method arguments

If one of the received arguments for a method is an interface then you do not
need to call either AddRef or Release on the interface pointer. The only exception
to this is if your module wishes to keep a copy of the interface — in this case you
should call AddRef on the interface pointer, and you must also release the
interface later.

If an interface is a return argument for a function, it is the module's responsibility
to ensure that the interface is released at some later date. Using ATL smart
interface pointers, as described in Section 3.4.3, can help to make this task
simpler.

PS/Workshop V2.1 Developer Guide 21

Using COM in PS/Workshop

3.4.2 lUnknown

Every COM object must inherit a standard interface called lUnknown, which
contains a number of methods that implement the reference count system.
IUnknown exposes the following methods:

Querylnterface

HRESULT Querylnterf ace(
REFIID riid, /1
LPVO D* pvaOJ /1

)

Received arguments

riid ’ Reference ID of the interface requested

Returned arguments

ppvQoj ‘Address of interface pointer if successful

Determines whether an object supports a particular interface. If it does,
Querylnterface returns the interface and increments the object’s reference count.

Use this method to request additional interfaces to the one returned by an
object’s creation method.

Specific Errors
E_NOINTERFACE No such interface supported.
E_POINTER Invalid pointer.

AddRef

‘ ULONG AddRef () ;

Increments the object’s reference count.

This method should be called whenever a new interface pointer is obtained.
However, you should rarely need to use this method, since the object’s reference
count is automatically incremented whenever an interface is obtained by calling
an object creation method, or when Querylinterface is called.

Rel ease

‘ ULONG Rel ease();

22

PS/Workshop V2.1 Developer Guide

3.4.3

With smart
pointers

Without smart
pointers

3.5

Converting between data-types

Releases an interface pointer, and decrements the object’s reference count.
As soon as the reference count reaches 0 the object destroys itself.

ATL smart interface pointers

ATL smart interface pointers are used to encapsulate PS/Workshop interfaces in
COM objects. Using smart interface pointers simplifies both using and managing
COM interfaces; the encapsulated interface is correctly released once the smart

pointer goes out of scope, so you do not need to worry about releasing it
explicitly.

The following example illustrates the difference between using smart pointers to

encapsulate COM interfaces, and using standard pointers:

| PSWDr awLi st *pDr awLi st /1 Previously initialised pointer

/1 create our smart interface pointer to hold our interface
CConPt r <| PSVWDr awOpt s> pDr awOpt s;

HRESULT hr = pDrawLi st->get _DrawOpti ons(&Drawdpt s) ;

if (SUCCEEDED(hr))

/1l Go off and do sonet hing

| PSWDr awLi st *pDr awLi st /1 Previously initialised pointer

/1 create a pointer to hold our interface

| PSWDr awOpt s * pDr awOpt s;

HRESULT hr = pDrawLi st->get _DrawOpti ons(&Drawdpt s) ;
if (SUCCEEDED(hr))

/1l Go off and do sonet hing

/1 renmenber to release the interface when finished with it
pDr awOpt s- >Rel ease();

Converting between data-types

This section contains a number of approaches to converting between different
datatypes that you might find useful when developing modules.

PS/Workshop V2.1 Developer Guide

23

Using COM in PS/Workshop

3.5.1 Converting from BSTR to CString
To convert from a BSTR to a CString:

BSTR bsDocTi tl e; /1 Previously initialised BSTR
CString csTitle = bsDocTitl e;

3.5.2 Creating a BSTR

To create a BSTR, use one of the following methods:

Method 1:
CConBSTR bsStr; /1 Unitialised BSTR
CString c¢sString = _T("Test String");
BsStr = csString;
Method 2:
CConmBSTR bstrMenulten{ CLESTR("Test String"));
Method 3:
CString csString = _T("Test String");
CConBSTR bsStr = csString. All ocSysString();

The CComBSTR is a special ATL (Active Template Library) object that
encapsulates a BSTR. Using this construct simplifies the process of handling a
BSTR. In particular, it means that the resources of the encapsulated BSTR are
correctly freed once the object has gone out of scope.

24 PS/Workshop V2.1 Developer Guide

Event Handling Within A
Module g

4.1 General message handling

In order to be recognized as a PS/Workshop module and loaded by
PS/Workshop, all modules must support the IPSWAddIn interface.

In addition, in order to provide event handling capability, all modules must
support IPSWEvents interface, so that the module can receive messages from
PS/Workshop. See Appendix A, “Interface Functions” for a complete reference of
all PS/Workshop interfaces.

If your module does not support the IPSWEvents interface, it can only access
CAddonMain level functionality. In particular, it cannot access any documents
which are opened in PS/Workshop.

The base class CAddinimpl that is created by the PS/Workshop AppWizard sets
up the necessary support for both these interfaces automatically, and
encapsulates a CAddonMain object.

Modules created using the PS/Workshop AppWizard route any messages from
the CAddinlmpl class to the CAddonMain class. Events can then either be
handled by the relevant function inside this class, or passed on to CAddonDoc.
In turn, events can either be handled inside CAddonDoc or passed to
CAddonView to handle. This mechanism is illustrated in Figure 4-1.

PS/Workshop V2.1 Developer Guide 25

Event Handling Within A Module

Event

Relevant function in CAddonMain

Handle the event
Route to the correct
CAddonDoc class

‘ Relevant function in CAddonDoc

Handle the event
Route to the correct
CAddonView class

‘ Relevant function in CAddonView I

Figure 4-1 The message handling mechanism within a PS/Workshop module

The class you decide to use to handle a given event depends on the functionality
you want for the operation concerned, as shown in the table below:

Class handling operation |Functionality available

CAddonMain Functionality for the operation is available at the
application level, i.e. when there are no
documents open.

CAddonDoc Functionality for the operation is available at the
document level, i.e. for the current document.

CAddonView Functionality for the operation is available at the
view level, i.e. for the current view of the current
document.

The following message handlers are available for each of the classes above. Full
information about each message handler is given in Chapter 5, “Module

Structure”.
Class Available message handlers
CAddonMain OnCmdMsg OnDocOpen OnDocdl ose

Vi ewOpen OnVi ewCl ose OnAppDest r oy
OnSel ect Topol s OnPar t Change

26 PS/Workshop V2.1 Developer Guide

4.2

Handling menu command events

Class Available message handlers
CAddonDoc OnCmdMsg OnDocCl ose OnVi ewOpen

Vi ewCl ose OnSel ect Topol s OnPart Change
CAddonView OnCmdMsg

Modules created using the PS/Workshop AppWizard use several of the available
message handlers to ensure that the list of CAddonDoc and CAddonView
classes are correctly created and destoyed.

Handling menu command events

The OnCmdMsg functions available in CAddonMain, CAddonDoc, and
CAddonView can be called from PS/Workshop when the user chooses a menu
command that has been added by a module.

As with other events, modules route menu command events from the
CAddinlmpl class to the relevant function in CAddonMain: in this case,
CAddonMain::OnCmdMsg. This function can then either handle the event or call
the corresponding CAddonDoc::OnCmdMsg function. In turn, this function can
either handle the event or pass it to the CAddonView::OnCmdMsg to handle.

The ID associated with any particular menu command must be unique within the
module, otherwise the function called may not be the correct one. Section 2.3,
“Adding a Hollow menu item”, provides an example of how you can do this.

Figure 4-2 displays the command handling mechanism in more detail.

PS/Workshop V2.1 Developer Guide 27

Event Handling Within A Module

User chooses menu
item added by module

Associate 1D with
menu item

S CAddonMain::OnCmdMsg —

Handle the event

Route to the correct
CAddonDoc class

CAddonDoc::OnCmdMsg I—»
Handle the event

Route to the correct
CAddonView class

CAddonView::OnCmdMsg |

Figure 4-2 The command handling mechanism within a PS/Workshop module

OnCmdMsg can also be called if a user registered File type is opened or saved
(as specified using the IPSWApp::RegisterFileXXXFunctions) in which case the
second parameter contains the name of the file to open/save.

When you handle an event using the OnCmdMsg function for a given class, you
should set the value of the hr variable to S_OK to ensure that no classes further
down the event chain are called. An example of how this might be done is shown
below:

28 PS/Workshop V2.1 Developer Guide

Handling menu command events

HRESULT CAddonDoc: : OnCndMsg(Ul NT nl D, voi d* | pparm)

{
HRESULT hr = S_FALSE;

/! either handle the event here...
switch(nlD)

{

case | D_ON_MY_COVIVAND:
OnMyFunction();
hr = S OK; // W need to set this variable here

/] otherw se the event wl |l

br eak; /'l be passed onto the view (which neans we

/1 could have the
defaul t: /levent responded to tw ce

br eak;

}

/1 check to see if we have already handl ed this event
if (hr == S FALSE)
{

/1 try routing this to the active view

CAddonVi ew* pView = CetActiveView);

HRESULT hr = S FALSE;

if (pView)

hr = pVi ew- >OnCndMsg(nI D, | pparm);

return hr;

PS/Workshop V2.1 Developer Guide 29

Event Handling Within A Module

30 PS/Workshop V2.1 Developer Guide

Module Structure B

This chapter describes the module structure that is created for you automatically
when you use the PS/Workshop AppWizard as a basis for a new module. The
relationships between the classes produced are detailed in Figure 5-1. A more
in-depth description of each class is given in the rest of this chapter. See
Appendix A, “Interface Functions” for a description of the interfaces that each
class supports.

CAddinimpl === |PSWAddIn interface CXXXApp
&om_pMain P IPSWEvents interface -
Exitlnstance()
cAddonDoc L nitinstance()
l%m_addonMain
. _» @m_lnterfaceVsViewMap
CAddonMain &4m_nparts - |PSWParts interface
BIm_pAppinterface l%m_pDoclnterface
Bm_pinterfaceVsDoctap &m_pDraw List == |PS\WROollback interface
‘GetActiveDocument() %m—zgzt;
L L .
‘8:/22%?;3{;3’0 &5m_pRolback - |PSWDoc interface
“OnDocCIose() @m_pSeIectionL'st
®onDocOpen() - |PS\WSelectionList interface
®onPartChange() ScetActiveView()
®onselectTopols() WGetDocumentinterface()
:OnViewCIose() :GetDraWInterface()
OnViewOpen() GetPartinterface() -
SstartModule() SiGetParts() = Caddonview
I®¥NewMethod() $GetRolbackint erface () %m-pDPC
¥GetSelectioninterface () m_pView Interface
:gn(D?del\l/lsg() ‘OnCmdMsg()
: nuoc ose.() ‘GetViewInterface()
IPSWApp interface ¥onMyFunction()
‘OnPartChange()
‘OnSeIectTopoB()
*OnViewCIose() L
“Sonvewopen() IPSWView interface

Figure 5-1 Overview of the structure of a module created using the AppWizard

PS/Workshop V2.1 Developer Guide 31

Module Structure

51 CAddinlmpl

The CAddinimpl class receives all events and messages from PS/Workshop and
passes them to the encapsulated CAddonMain class.

Itis also responsible for instantiating the class itself (IPSWAddIn::OnConnection)
and deleting the class (IPSWAddIn::OnDisconnection).

This class supports both the IPSWAddIn and IPSWEvents interfaces. During the
initial IPSWAddIn::OnConnection event, CAddinimpl creates an instance of the
CAddonMain class. Subsequent messages from PS/Workshop are passed to
this encapsulated CAddonMain object.

CAddinlmpl has a single data member:

Data member Description
CAddonMai n *m _pMai n An instance of the CAddonMain class
52 CXXXApp

The CXXXApp class is an MFC-generated module application object, and is
provided as part of the MFC framework of the module. You should place any
initialisation code for a module in either the CAddinimpl or CAddonMain classes,
rather than this class.

5.2.1 CXXXApp Functions
CXXXApp contains the following functions.

Initl nstance

‘ BOCL | nitlnstance()

Performs initialisation of the module.

Exitlnstance

int Exitlnstance()

Performs clean-up of the application.

32 PS/Workshop V2.1 Developer Guide

CAddonMain

5.3.1

The CAddonMain class receives all events and messages from the CAddinimpl
class. These can either be handled by the appropriate message handler in
CAddonMain, or passed on to CAddonDoc for handling.

Summary

The following is a summary of the CAddonMain class.

Data members

Description

CCon®Q) Pt r <I PSWApp>
m _pAppl nterface

interface

A pointer to the PS/Workshop IPSWApp

CMap<I| PSWDoc*,
CAddonDoc*,
m | nt er f aceVsDocMap

| PSWDoc*,
CAddonDoc* >

Maintains a mapping between the list of
the IPSWDoc interface pointer and the
associated CAddonDoc class

Constructors

Description

CAddonMai n

Constructs the CAddonMain object

Message handlers

Description

OnDocd ose

Handles the IPSWEvents:

:0OnDocClose message

OnDocOpen

Handles the IPSWEvents:

:OnDocOpen message

OnPar t Change

Handles the IPSWEvents::

OnPartChange message

OnSel ect Topol s

Handles the IPSWEvents:

:OnSelectTopols message

Vi ewCl ose Handles the IPSWEvents::OnViewClose message

OnVi ewOpen Handles the IPSWEvents::OnViewOpen message

OnCmdMsg Handles the IPSWEvents::OnCommand message

Module methods Type Description

Get Act i veDocument CAddonDoc* | Returns the currently active
CAddonDoc class

Initialiser/Destructors | Description

St ar t Modul e

Handles the IPSWAddIn::OnConnection event

OnAppDest r oy

Handles the IPSWAddIn::OnDisconnection event

PS/Workshop V2.1 Developer Guide

33

Module Structure

5.3.2 CAddonMain functions

CAddonMain contains the following functions.

CAddonMain

Constructor

CAddonMai n
(

--- received argunents ---
I D spat ch *pl PSWApp

Constructs a CAddonMain object.

Received arguments
pl PSWApp Pointer to the PS/Workshop dispatch interface

OnDocClose

Message handler

HRESULT OnDocCl ose
(

--- received argunents ---
| PS\Wboc *pDoc
)

Handles the IPSWEvents::OnDocClose event.

Received arguments

pDoc The IPSWDoc interface associated with this document

This function traverses the interface/document map (m_plinterfaceVsDocMap)
and passes the event to the correct document to handle.

OnDocOpen

Message handler
HRESULT OnDocOpen
(

--- received argunents ---
| PS\Wboc *pDoc
)

Handles the IPSWEvents::OnDocOpen event.

34 PS/Workshop V2.1 Developer Guide

Received arguments

pDoc ‘The IPSWDoaoc interface associated with this document

This function creates a new CAddonDoc object and adds this to the
interface/document map (m_plinterfaceVsDocMap).

OnPartChange

Message handler
‘ HRESULT OnPart Change()

Handles the IPSWEvents::OnPartChange event.
This function passes the event to each of the documents.

OnSelectTopols

Message handler
‘ HRESULT OnSel ect Topol s()

Handles the IPSWEvents::OnSelectTopols event.
This function passes the event to each of the documents.

OnViewClose

Message handler
HRESULT OnVi ewCl ose
(

--- received argunents ---
| PS\WWboc * pDoc,
| PSW/i ew *pVi ew

)

Handles the IPSWEvents::OnViewClose event.

Received arguments

pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

This function traverses the interface/document map (m_plnterfaceVsDocMap)
for the associated document and passes the event to it.

PS/Workshop V2.1 Developer Guide 35

Module Structure

OnViewOpen

Message handler

HRESULT OnVi ewOpen

(

--- received argunents ---
| PS\WWboc * pDoc,
| PSW/i ew *pVi ew

)

Handles the IPSWEvents::OnViewOpen event.

Received arguments

pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

This function traverses the interface/document map (m_plinterfaceVsDocMap)
and passes the event to the correct CAddonDaoc.

OnCmdM sg

Message handler
HRESULT OnCrdMsg
(

--- received argunents ---
U NT nlD,
voi d *| pparam = NULL

Handles the IPSWEvents::OnCommand event.

Received arguments

nl D The ID associated with this command

| ppar am Extra data related to the command

The OnCmdMsg function looks for the function associated with the ID in the
CAddonMain class. If it fails to find one, the event is passed to the CAddonDoc
class to handle.

GetActiveDocument

Module method
‘ CAddonDoc* Get Act i veDocument ()

This function returns the currently active CAddonDoc class. If there is no
currently active document it returns NULL.

36

PS/Workshop V2.1 Developer Guide

CAddonDoc

54

StartM odul e

Initializer

HRESULT St art Modul e
(

--- received argunents ---
| PSWAddI n * pApp

)

This function handles initialisation of the PS/Workshop module. It is called as a
result of IPSWAddIn::OnConnection.

Received arguments
pApp The IPSWAddIn interface of the module

You should add any one-time initialisation code for your module here. This
includes code for adding menu items, as well as registering any callback
functions.

If this function returns a failure code then the CAddinimpl::OnConnection deletes
the CAddonMain class and itself returns a failure which forces PS/Workshop to
unload the module.

OnAppDestroy

Destructor
‘ HRESULT OnAppDest roy() \

This function handles destruction of the module. It is called as a result of
IPSWAddIn::OnDisconnection.

OnAppDestroy traverses the interface/document map (m_plinterfaceVsDocMap)
deleting each document.

CAddonDoc

54.1

The CAddonDoc class represents a module document that shadows the current
PS/Workshop document.

Summary

The following is a summary of the CAddonDoc class.

PS/Workshop V2.1 Developer Guide 37

Module Structure

Data members

Description

CAddonMai n *m addonMai n

The parent CAddonMain class

int mnParts

The number of parts in the document

PK_PART_t *m pkParts

A copy of the parts in the document

CConPt r <I PSWDoc>
m pDocl nt er f ace

The associated IPSWDoc smart interface

pointer
CConPt r <| PSWPar t s> The associated IPSWParts smart interface
m pPart Li st pointer

CConPt r <| PSWEel ect i onLi st >
m pSel ecti onLi st

The associated IPSWSelectionList smart
interface pointer

CConPt r <| PSWDr awLi st >
m _pDr awLi st

The associated IPSWDrawList smart
interface pointer

CconPt r <| PSWRol | back>
m _pRol | back

The associated IPSWRollback smart
interface pointer

CMvap< | PSW/i ew*,

| PSW/i ews, CAddonVi ew*,
CAddonVi ew* >

m | nt er f aceVsVi ewVap

Maintains a list of the IPSWView interfaces
and the associated CAddonView class

Constructors

Description

CAddonDoc

Constructs the CAddonDoc object

Message handlers

Description

OnDocd ose

Handles the CAddonMain

::0OnDocClose message

OnPar t Change

Handles the CAddonMain

:OnPartChange message

OnSel ect Topol s

Handles the CAddonMain

::OnSelectTopols message

Vi ewCl ose Handles the CAddonMain::OnViewClose message
OnVi ewOpen Handles the CAddonMain::OnViewOpen message
OnCmiMsg Handles the CAddonMain::OnCmdMsg message

Interface access functions

Description

CConPt r <I PSWDoc>&
Get Docunent I nterface

Returns the IPSWDoc interface

CConPt r <l PSWBel ecti onLi st >&
CGet Sel ectionlnterface

Returns the IPSWSelectionList interface

CConPt r <| PSWDr awLi st >&

CGet Drawl nt er f ace

Returns the IPSWDrawList interface

38

PS/Workshop V2.1 Developer Guide

CAddonDoc

Interface access functions Description

CConPt r <| PSWPar t s>& Returns the IPSWParts interface

Get Part | nterface

CConPt r <I PSWRol | back>& Returns the IPSWRollback interface

Get Rol | backl nterface

Module methods | Type Description

Cet Acti veVi ew |CAddonVi ew* | Returns the currently active view

GetParts HRESULT Returns the number of parts in the document
Custom functions Description

OnMyFuncti on Demonstration User extensible function.

5.4.2 CAddonDoc functions

CAddonDoc contains the following functions.

CAddonDoc

Constructor

CAddonDoc

(.

--- received argunents ---
| PS\WWboc *pDoc,
CAddonMai n *pMai n

)

This function constructs a CAddonDoc object and sets the values of the following

interfaces:

B |PSWSelectionList
B |PSWDrawList

B |PSWRollback

B [PSWParts

Received arguments
pDoc The associated IPSWDoc interface
pMai n The parent CAddonMain

The CAddonDoc constructor also queries and sets the correct values for
m_nParts and m_pkParts.

PS/Workshop V2.1 Developer Guide 39

Module Structure

OnDocClose

Message handler

HRESULT OnDocCl ose
(

--- received argunents ---
| PS\Wboc *pDoc
)

This function handles any CAddonMain::OnDocClose events passed to it from
CAddonMain.

Received arguments
pDoc The IPSWDoc interface associated with this document

It traverses the view/interface map (m_InterfaceVsViewMap) and deletes the
associated view.

OnPartChange

Message handler
‘ HRESULT OnPart Change()

This function handles the CAddonMain::OnPartChange events passed to it from
CAddonMain.

It does the following:

B Deletes the m pkPart s array, which stores a copy of the parts in the
document.

B Sets m nparts (the length of m pkPart s) to zero.

B Gets the parts in the document from PS/Workshop again, and places them in
m pkParts.

B Sets m nparts accordingly.

OnSelectTopols

Message handler
‘ HRESULT OnSel ect Topol s()

This function handles the CAddonMain::OnSelectTopols events passed to it from
CAddonMain.

Events can either be handled here or passed to the active view using the
CAddonView class.

40

PS/Workshop V2.1 Developer Guide

CAddonDoc

OnViewClose

Message handler

HRESULT OnVi ewCl ose

(

--- received argunents ---
| PS\WWboc * pDoc,
| PSW/i ew *pVi ew

)

This function handles the CAddonMain::OnViewClose events passed to it from
CAddonMain.

Received arguments

pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

It traverses the view/interface map (m_InterfaceVsViewMap) and deletes the
associated view.

OnViewOpen

Message handler

HRESULT OnVi ewOpen

(

--- received argunents ---
| PS\WWboc *pDoc,
| PSW/i ew *pVi ew

)

This function handles the CAddonMain::OnViewOpen events passed to it from
CAddonMain.

Received arguments
pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

It traverses the view/interface map (m_InterfaceVsViewMap) and opens the
associated view.

PS/Workshop V2.1 Developer Guide 41

Module Structure

OnCmdMsg

Message handler

HRESULT OnCrdMsg

(

--- received argunents ---
U NT nl D,
void *| pparam = NULL

)

This function handles CAddonMain::OnCmdMsg events passed to it from
CAddonMain.

Received arguments
ni D The ID associated with this command

| ppar am Extra data related to the command

It looks for a handler for the nl Dmessage in the CAddonDoc class. If it is unable
to find a handler then the event is passed to the CAddonView class.

GetDocumentlnterface

Interface access function
‘ CConPt r <I PSWWDoc>& Get Docunent I nt erface()

This function returns the IPSWDoc interface.

GetSelectionlnterface

Interface access function
‘ CConPt r <| PSW8el ect i onLi st >& Get Sel ectionlnterface()

This function returns the IPSWSelectionList interface.

GetDrawl nterface

Interface access function
‘ CConPt r <| PSWDr awLi st >& Get Drawl nt er f ace()

This function returns the IPSWDrawlList interface.

GetPartlnterface

Interface access function
‘ CConPt r <I PSWPart s>& CGetPart | nterface()

This function returns the IPSWParts interface.

42

PS/Workshop V2.1 Developer Guide

CAddonDoc

GetRollbacklnterface

Interface access function
‘ CConPt r <|I PSWRol | back>& Get Rol | backl nt erface()

This function returns the IPSWRollback interface.

GetActiveView

Module method
‘ CAddonVi ew* Cet Acti veVi ew()

This function returns the currently active view. If there is no active view then this
will return NULL.

GetParts

Module method

HRESULT GetParts

(

--- returned argunents ---
int &Parts,
PK_PART_t *&pkParts

)

This function returns the number of parts in the document. It interrogates and
returns a copy of the parts in the PS/Workshop document.

Returned arguments
&nParts The number of parts

&pkParts The parts

This function allocates an array of the parts in PS/Workshop. It is up to the
module to correctly free the returned array, using del ete[] .

Note: This function does not return m_nPart and m_pkParts variables defined
in the CAddonDoc class

OnMyFunction

Custom function
‘ HRESULT OnMyFunct i on()

This function is supplied to demonstrate the message handling functionality.

PS/Workshop V2.1 Developer Guide 43

Module Structure

When the module as created by the AppWizard is compiled and built, a new
menu item is added to PS/Workshop. OnMyFunction is called when the user
clicks on this new menu item. OnMyFunction simply displays a message
indicating that this function has been reached.

5.5 CAddonView

The CAddonView class represents a module view that shadows the current
PS/Workshop view.

5.5.1 Summary

The following is a summary of the CAddonView class.

Data members Description
CAddonDoc* m doc A pointer to the parent CAddonDoc
CConQ Pt r <I PSW/i ew2> The associated IPSWView?2 interface

m pVi ewl nterface

Constructors Description

CAddonVi ew Constructs the CAddonView object

Message handlers Description

OnCndMsg Handles the CAddonDoc::OnCmdMsg
message

Interface access functions |Description

CConQ Pt r <I PSW/i ew2>& Returns the encapsulated IPSWView? interface
Get Vi ewl nterface

5.5.2 CAddonView functions

CAddonView contains the following functions.

CAddonView

Constructor

CAddonVi ew

(

--- received argunents ---
| PSW/i ew *pVi ew,
CAddonDoc *pDoc

)

44 PS/Workshop V2.1 Developer Guide

CAddonView

This function constructs the CAddonView object.

Received arguments

pVi ew The associated IPSWView interface
pDoc The CAddonDoc associated with this CAddonView

OnCmdM sg

Message handler

HRESULT OnCdMsg
(

--- received argunents ---
U NT nl D,
void *| pparam

)

This function handles the CAddonDoc::OnCmdMsg message.

Received arguments

nl D The ID associated with this message

| ppar am Optional extra information for this message

GetViewlnterface

Interface access function
‘ CConfQ) Pt r <I PSW/i ew2>& Get Vi ewl nt er f ace()

This function returns the encapsulated IPSWView? interface.

PS/Workshop V2.1 Developer Guide 45

Module Structure

46

PS/Workshop V2.1 Developer Guide

The PS/Workshop

| nterfaces

PS/Workshop functionality is made available to modules through a number of
COM interfaces. These interfaces have been designed to correspond as closely
as possible to the Microsoft Foundation Classes (MFC) Multiple Document
Interface (MDI) paradigm common in many Windows-based applications,

including PS/Workshop.

There are 3 main interfaces:

B |IPSWApp: associated with the PS/Workshop application
B |PSWDoc: associated with an open document in PS/Workshop
B |PSWView2: associated with a given view on an open document in

PS/Workshop

Similarly, the structure of a module created using the PS/Workshop AppWizard
is designed to emulate the MDI structure, and provides the following classes:

B CAddonMain, which contains a pointer to the IPSWApp interface
B CAddonDoc, which contains a pointer to the IPSWDoc interface related to

the document

B CAddonView, which contains a pointer to the IPSWView interface associated

with the view.

These classes are described in full in Chapter 5, “Module Structure”.

Interfaces

Description

IPSWApp

The IPSWApp interface represents the overall
PS/Workshop application. There is exactly one
IPSWApp interface for each instance of
PS/Workshop. The IPSWApp interface is supplied to
a module when the module is first loaded.

The IPSWApp interface contains functions for
modifying the PS/Workshop user interface, opening
documents and registering callback functions.

IPSWDoc

The IPSWDoc interface represents each of the
PS/Workshop parts (documents) currently open. For
each open document there exists a corresponding
IPSWDoc interface pointer. Those functions called
from IPSWDoc only affect the associated
PS/Workshop document.

PS/Workshop V2.1 Developer Guide

a7

The PS/Workshop Interfaces

Interfaces Description
IPSWView This interface has been superseded by IPSWView?2
IPSWView2 Each document open in PS/Workshop has one or

more views attached. Each IPSWView is associated
with an IPSWDoc.

Note: In the current version of PS/Workshop there is
only one IPSWView associated with each IPSWDoc.

IPSWParts Each of these interfaces can be obtained from an
IPSWSelectionList IPSWDoc interface, and as such they only affect the
IPSWRollback associated document. They allow control over
IPSWDrawList

B the number of Parasolid parts in the document
B the selection of entities

W Parasolid partitioned rollback

W custom drawing of entities

respectively.

IPSWEnumParts Each of these interfaces can be obtained from the
IPSWEnumSelectionList |associated IPSW interface (for example
IPSWEnumDrawList IPSWEnumParts can be obtained from IPSWParts).

They allow the entities associated with each
interface to be enumerated.

IPSWDrawOpts This interface can be obtained from IPSWDrawList
(in which case it contains the current draw options).
It provides control over how particular entities are
displayed in the draw list.

IPSWDrawOpts is somewhat different from other
interfaces, in that it can also be created and passed
to the IPSWDrawlList interface (in which case it
contains the new draw options).

Figure 6-1 shows how the various PS/Workshop interfaces interact. For a
complete reference for all the functions available in each COM interface, see
Appendix A, “Interface Functions”. For an introduction to the PS/Workshop draw
list, see Chapter 9, “The Draw List".

48 PS/Workshop V2.1 Developer Guide

<<Interface >>
IPSWApp <<lInterface>> <<Interface>>
EXActiveDocument IPSWParts IPSW EnumPart s
EHDocuments NewEnum
E¥StatusBarText Count = B8icione()
&4V ersion Item Next()
AddMenultem() AddlItems() zzi;e(t)()
OpenDocument() IsEmpty() <<Interface>>
OpenNewDocument() IsMember() IPSWEnumSelectionList
QueryPSW Module Interface() RemoveAli()
RegisterFileOpenFunction() Removeltems() <<Interface>> ®cione()
RegisterFileSave AsFunction() Replaceltems() | | IPSWSelectionList | |Finext()
CloseDocument() NewEnum > [®Reset()
AddMenuiltem2() Count [Siskip()
s | Beoi
<<lInterface>>
IPSWDocs E¥colour Additems() IPSWEnumDraw List
Docu mentTitIe ISEmpty()
B®AddDocument() [RerartList IsMember() ®cione()
[®peleteDocument() SoDrawList RemoveAll() [SiNext()
ggRollback Remove ltems() [®Reset()
<<Interface>> SelectlonLlst ResetColour() ®skipo
IPSWViews Views || ¥ResetColour2()
SetColour() << -
AddView () SaveAsBMP() SetColour2() .psu‘,tgrﬁﬁgpts
De kteView() Save AsXGL() =i
Save AsW MF() =4-1p
‘ Update() <<Interface>> s Colour
V IPSW Draw List v Sense
<<Interface>> B NewEnum l’:ll_g
= IPSWView Bicount Talerance
=5Curre ntOperation <<Interface>> DrawOptions v
E*3RenderFacetOptions IPSWRolback &item Ini
&3RenderLineOptions %an'to
SelectionFiIter Dek tePMark() Addltems() eset() |
E3viewcentre MakePMark() AddItems2()
BSviewMatrix RolbackTo() ISsEmpty()
EBviewstyle IsMember()
Modifyltems()
ISFiToscreen() RemoveAll()
[Sscaeview() Removeltem()
[®RresetRenderOptions() Update()
¥ z00omToEntities()
[®rotate View ()

®update()

Figure 6-1 The PS/Workshop COM interface

PS/Workshop V2.1 Developer Guide

49

The PS/Workshop Interfaces

50 PS/Workshop V2.1 Developer Guide

AddingaNew Menu ltem
to PS/Workshop [

You can add a new menu item to PS/Workshop using IPSWApp::AddMenultem
or IPSWApp::AddMenultem?2. Typically this is done in
CAddonMain::StartModule, which is called when the module is first loaded.

In order to add a new menu item you need to do the following:

B Define an ID to be associated with the new menu item. This ID must be
unique within your module.

The easiest way of doing this is to add a new ID via the Resources Symbol
dialog in Visual Studio (View > Resource Symbols).

B Decide which class you want to handle the new menu item in. The class you
choose depends on whether the menu item needs to operate at the
application, document, or view level.

B Add a function to the chosen class. This function should return HRESULT.

B Modify OnCmdMsg in the chosen class to ensure that your function is called
when it receives the ID.

For example, suppose that you wish to add a function called OnBlend with
the ID ID_COMMAND_ON_BLEND to the CAddonDoc class. In this case,
the CAddonDoc::OnCmdMsg would be as follows:

PS/Workshop V2.1 Developer Guide 51

Adding a New Menu Item to PS/Workshop

HRESULT CAddonDoc: : OnCndMsg(Ul NT nl D, voi d* | pparm)
{
HRESULT hr = S_FALSE;

/! either handle the event here...
switch(nlD)

{
case | D COVMAND ON BLEND:
OnBl end() ;
hr = S OK;
br eak;
defaul t:
br eak;

}

/1 check if the message has al ready been handl ed
if (hr == S_FALSE)
{

/1 try routing this to the active view
CAddonVi ew* pView = CetActiveView);
if (pView)

hr = pVi ew->OnCmdMsg(nI D, | pparm);

return hr;

B Add a call to AddMenultem in CAddonMain::StartModule to add the menu
item.

For example, the following code above adds an Operations menu
containing a Blend command to the document level of PS/Workshop (i.e. the
menu is only available when a document has been opened) . The ID
ID_COMMAND_ON_BLEND is also associated with the menu item.

CConmBSTR bstrMenul ten{ COLESTR(" &Operati ons\nBl end"));
HRESULT hr = m pAppl nterface->AddMenul t en{ pApp, bstrMenultem
| D_COMVAND_ON_BLEND, PSW Menu_Doc);

IPSWApp::AddMenultem?2 provides additional functionality to AddMenultem, so

that you can specify the precise position of any menu or menu item in the
PS/Workshop menu bar.

52 PS/Workshop V2.1 Developer Guide

Registering Handlers for
Different Filetypes

If required, your module can load files into or save files from PS/Workshop with
specific file extensions. In order to do this, you must register functions with
PS/Workshop that are called when trying to either open or save files with the file
extensions you want to use.

When it is called, each registered function is passed the filename of the file to
open or save. It is then the responsibility of the registered function to correctly
open or save the file.

The following functions in the IPSWApp interface can be used to register
handlers for different filetypes:

Function Description

RegisterFileOpenFunction This function takes a description string that
contains two parts:

B The first part is the text that appears as an
entry in the “Files of type” box in the File
Open dialog.

B The second part contains information about
the file extensions to be associated with the
function.

See the RegisterFileOpenFunction
documentation for details of the exact formatting
of the string.

RegisterFileSaveAsFunction | This function is similar to
RegisterFileOpenFunction, but the description
appears in the File Save As dialog rather than
the File Open dialog.

See the RegisterFileSaveAsFunction
documentation for details of the exact formatting
of the string.

PS/Workshop V2.1 Developer Guide 53

Registering Handlers for Different Filetypes

54 PS/Workshop V2.1 Developer Guide

The Draw List

Specifying which parts to render

By default, PS/Workshop attempts to render all the parts in a document.
Sometimes, though, this might not be the best method: for example, you may
only be interested in rendering a specific area of the document, or only one part
in the document. In such cases you need to use the draw list.

The draw list provides control over which entities to display, and how they should
be displayed. There is one draw list associated with each document. Using the
draw list also lets you display geometry in wireframe modes.

The following entity classes are supported by the draw list:

PK_CLASS body

PK_CLASS face

PK_CLASS edge
PK_CLASS_vertex
PK_CLASS_point

PK_CLASS_curve and all subclasses
PK_CLASS_surf and all subclasses

The draw list can be obtained from a document through the IPSWDoc::DrawList
interface property.

Initially, the draw list for a given document is empty. Whenever this is the case,
PS/Workshop draws all the parts in the document. If entities are subsequently
added to the draw list, only those entities are displayed.

Entities can be added to the draw list using IPSWDrawList::Additems (which
adds items to the draw list using the default draw options) or
IPSWDrawList::Addltems2 (which adds items to the draw list using a specified
set of draw options). An entity can only exist in a draw list once — attempting to
add it again will cause the Additems or AddItems2 (whichever was called) to fail.

Entities can be removed from the draw list using IPSWDrawList::Removeltems
or IPSWDrawList::RemoveAll. Once the draw list is empty, PS/Workshop once
again displays all parts in the document.

PS/Workshop V2.1 Developer Guide 55

The Draw List

9.2 Setting drawing options

As well as adding entities to a draw list you can control how those entities are
displayed using the IPSWDrawOpts interface. This interface is used as an
argument for a number of the draw functions.

IPSWDrawOpts lets you control the following properties:

Properties Description Entities affected
Clip Clip entity to part box (currently ignored) | curves surfaces
Colour Colour in which to draw entity geometry
topology
DrawSense Whether to display sense of entity edges curves
faces surfaces
N_U Number of U param hatch lines to display | surfaces
N_V Number of V param hatch lines to display | surfaces
Tolerance Whether to display tolerance of entity edges vertices
ToleranceColour | Colour in which to display entity edges vertices
tolerance

Further details of both the IPSWDrawList and IPSWDrawOpts interfaces can be
found in Appendix A, “Interface Functions”.

56 PS/Workshop V2.1 Developer Guide

| nterface Functions PA

Introduction

This chapter provides a complete reference to all the functions and properties
available in the COM interfaces provided by PS/Workshop.

B For a more general introduction to the interfaces available, see Chapter 6,
“The PS/Workshop Interfaces”.

B For an explanation of the support your module should provide for the
interfaces, and the support provided by default when you use the
PS/Workshop AppWizard, see Chapter 5, “Module Structure”.

As for all COM interfaces, the interfaces described in this chapter inherit the
IlUnknown interface. That is, they all have Queryinterface, AddRef, and Release
methods to control the lifetimes of objects that expose the interface. See Section
3.4, “Managing the lifetime of COM objects”, for more information.

| PSWA pp

A.2.1

The IPSWApp interface represents the overall PS/Workshop application. There
is exactly one IPSWApp interface for each instance of PS/Workshop. The
IPSWApp interface is supplied to a module when the module is first loaded.

The IPSWApp interface contains functions for modifying the PS/Workshop user
interface, opening documents and registering callback functions.

Summary

The following is a summary of the IPSWApp interface.
Properties

Property Type Description

ActiveDocunent |l PSWDoc The currently active document

Docunent s | PSMDocs | The document collection object

St at usBar Text BSTR The status bar text

Ver si on doubl e The current PS/Workshop version

PS/Workshop V2.1 Developer Guide 57

Interface Functions

Functions

Function Description

AddMenul t em Adds an item to a PS/Workshop menu

AddMenul t en? Adds an item to a PS/Workshop menu in a
specific position

OpenDocunent Loads an existing Parasolid partfile

OpenNewDocunent Opens a new (empty) document

Cl oseDocunent

Closes a given document

Quer yPSWhvbdul el nt erf ace

Queries for the existence of a particular

interface

Regi st er Fi | eQpenFuncti on Registers a custom FileOpen format

Regi sterFi | eSaveAsFuncti on | Registers a custom FileSaveAs format

A.2.2 IPSWApp Properties

ActiveDocument

HRESULT get_Acti veDocunent

--- returned argunents ---

| PS\WWDoc **ppDoc
)

Returns the IPSWDoc interface pointer associated with the currently active
document. If there is no active document this returns S_FALSE.

Returned arguments

ppDoc The Active document

When get_ActiveDocument returns S_FALSE or E_FAIL, the value of ppDoc is
undefined.

HRESULT put _Acti veDocunent
(

--- received argunents ---
| PS\Wboc *pDoc
)

Attempts to activate the document associated with the pDoc interface.

58

PS/Workshop V2.1 Developer Guide

Received arguments
pDoc The document to activate

Specific Errors
E_INVALIDARG |There is no document associated with the given pDoc.

Documents

HRESULT get _Docunent s
(

--- returned argunents ---
| PS\WDocs **pDocs
)

Returns the IPSWDocs interface (a collection of IPSWDoc interfaces) which can
be used to interate over the documents in PS/Workshop.

Returned arguments
pDocs The IPSWDoaocs interface

Note: The Documents property is intended for internal use. If you wish to
examine the list of open documents in PS/Workshop, use the
m_InterfaceVsDocMap member variable in the CAddonMain class.

StatusB ar Text

HRESULT get _St at usBar Text
(

--- returned argunents ---
BSTR *pText

Returns the current text in the PS/Workshop status bar.

Returned arguments
pText The current status bar text

Note: It is reponsibility of the module to free the pText resource.

PS/Workshop V2.1 Developer Guide 59

Interface Functions

Example

/1 allocated previously
CConPt r <I PSWApp> pApp;

CConBSTR bsSt at usText ;

HRESULT hr = pApp->get _St at usBar Text (&bsSt at usText) ;
i f (SUCCEEDED(hr))

/1 convert the BSTR into a nore usable CString
CString csStatusText = bsStatusText;
}

HRESULT put _St at usBar Text

(

--- received argunents ---
BSTR Text

)

Sets the text in the PS/Workshop status bar.

Returned arguments

Text The new status bar text

Example

/1 allocated previously
CConPt r <I PSWApp> pApp;

CComBSTR bstrStatusText (OLESTR("Set Status Text"));
/1 or alternatively

I/l Cstring csStatusText = _T("Set Status Text");

/1 bstrStatusText.All ocSysString(bstrStatusText);

i f (SUCCEEDED(pApp->put_StatusBar Text))

{
/] convert the BSTRinto a nore usable CString
CString csStatusText = bsStatusText;

}

Version

HRESULT get_Version

(

--- returned argunents ---
doubl e *pVersi on

)

Returns the current version of PS/Workshop.

60 PS/Workshop V2.1 Developer Guide

Returned arguments

pVer si on ‘The version.

A.2.3 IPSWAPpp Functions

AddMenultem

HRESULT AddMenul tem

--- received argunents ---
| PSWADdI n *pAddI n,
BSTR ConmmandNane,
| ong Conmandl D,
PSW Menu_Mbde node

)

Adds an item to a PS/Workshop menu. If the menu does not already exist then it
is created first.

Received arguments

pAddl n IPSWAddIn interface of module
CommandNane Menu/Menu Item to add
Command| D The ID associated with the item
node How to add the item

CommandNane must be a NULL separated string.

B The last part of the string contains the text of the menu item to add.
B The first part of the string contains the text of the menu to add.

You can add a cascading menu to PS/Workshop by specifying a string that
contains more than two parts, as follows:

Menu\ nCommand\ nSub- Cormand

You can use the & character in CommrandNane to specify keyboard mnemonics
for your menu and menu item that the user can use to access the new command.
The character immediately after any & character in CommandNane is used as the
keyboard mnemonic for that part of the string. For example, the string

&Menu\ nC&omrand

would create a Menu menu containing a Command item. A PS/Workshop user
could access the new Command by typing Alt+M+0.

PS/Workshop V2.1 Developer Guide 61

Interface Functions

Note: You must take care to specify keyboard mnemonics that are unique and
consistent. Specifying both &Debug and D&ebug in different calls to
AddMenultem results in two Debug menus being added to PS/Workshop: one
accessible using Alt+D and the other accessible using Alt+E. You must also
take care not to specify mnemonics that have already been used at that level.

Commandl D contains the ID to be associated with the menu item. This is
subsequently passed back to the module during the IPSWEvents::OnCommand
event when the user chooses the menu item.

Note: The CommandID should be unique within a module.

The node argument may have the following values:

Value Description

PSW_Menu_App |Add the menu to the application level (such a menu is
available before any document is open).

PSW_Menu_Doc |Add the menu at a document level (the menu is only
available once a document is open).

See Chapter 7, “Adding a New Menu Item to PS/Workshop” for more information
about adding menu items to PS/Workshop.

Specific Errors

E_INVALIDARG One of the arguments is invalid
PSWERR_ITEMALREADYEXISTS | The item on the specified menu already
exists

Example The following example adds a Debug menu to PS/Workshop that contains an
Analyse command. When the user chooses this command the OnCommand
message on the module is called with the Commandl DID_ON_ANALYSE. The &
characters specify that the user can press Alt+D+A on the keyboard to access
the Analyse command.

62 PS/Workshop V2.1 Developer Guide

HRESULT hr = E_FAIL;

CConmBSTR bstr Menul t en{ OLESTR(" &Debug\ n&Anal yse"));
hr = m_pAppl nterface->AddMenul t en(pApp, bstrMenultem
| D_ON_ANALYSE, PSW Menu_Doc);

i f (SUCCEED(hr))

/1 ...do sonething

AddMenultem?2

HRESULT AddMenul t em
(
--- received argunents ---
| PSWADdI n *pAddI n,
BSTR ConmandNane,
| ong Conmandl D,
PSW Menu_Mode node
| ong menuPos,
l ong itenPos

)

Adds an item to a PS/Workshop menu, specifying the precise position of the
menu and menu item. If the menu does not already exist then it is created first.

Received arguments

pAddl n IPSWAddIn interface of module

CommandNane Menu/Menu Item to add

Commandl D The ID associated with the item

nmode How to add the item

menuPos The position in the existing PS/Workshop menu to add the
new menu

i t enPos The position in the menu to add the new menu item to

ConmmandNane must be a NULL separated string.

B The last part of the string contains the text of the menu item to add.
B The first part of the string contains the text of the menu to add.

You can add a cascading menu to PS/Workshop by specifying a string that
contains more than two parts, as described in the documentation for
AddMenultem.

You can use & to specify keyboard mnemonics for menus and menu items, as
described in the documentation for AddMenultem.

PS/Workshop V2.1 Developer Guide

63

Interface Functions

Example

Commandl D contains the ID to be associated with the menu item. This is
subsequently passed back to the module during the IPSWEvents::OnCommand
event when the user chooses the menu item.

Note: The CommandID should be unique within a module.

The node argument may have the following values:

Value Description

PSW_Menu_App |Add the menu to the application level (such a menu is
available before any document is open).

PSW_Menu_Doc |Add the menu at a document level (the menu is only
available once a document is open).

See Chapter 7, “Adding a New Menu Item to PS/Workshop” for more information
about adding menu items to PS/Workshop.

Specific Errors

E_INVALIDARG One of the arguments is invalid
PSWERR_ITEMALREADYEXISTS | The item on the specified menu already
exists

The nmenuPos argument lets you specify the position of the new menu in the
PS/Workshop menu bar. Setting this to 0 makes the new menu the first one on
the menu bar (at the left), setting it to 1 makes it the second menu, and so on. A
value of -1 appends the new menu to the right hand end of the menu bar.

Note: Although you can place new menus anywhere in the PS/Workshop menu
bar, you should ensure that you conform to GUI design guidelines when
designing your module.

The i t emPos argument lets you specify the position of the new menu item in the
PS/Workshop menu. Setting this to 0 makes the new item the first one on the
menu, setting it to 1 makes it the second item, and so on. A value of -1 appends
the new item to the end of the specified menu.

The following example adds a Blend menu to PS/Workshop that contains a
Notch command. When the user chooses this command the OnCommand
message on the module is called with the Conmandl DID_ON_NOTCH. The
Blend menu is placed at position 5, which ensures that it appears between the
Window and Help menus in PS/Workshop, and the Notch command is placed

64

PS/Workshop V2.1 Developer Guide

Example

at position 0, which ensures it is the first command in the Blend menu,
regardless of other commands that may have been added.

HRESULT hr = E _FAIL;
CConmBSTR bstrMenul ten{ OLESTR("BI &nd\ nNotch"));

hr = m pAppl nterface->AddMenul t en2(pApp, bstrMenultem
| D_ON_NOTCH, PSW Menu_Doc, 5, 0);
i f (SUCCEEDED(hr))

{

/1 ...do sonething
}
OpenDocument

HRESULT OpenDocunent
(

--- received argunents ---
BSTR fi |l eNane,

--- returned argunents ---
| PS\WWboc **ppDoc

)

Loads a new part from file and opens a corresponding module document.

Received arguments

fileNane ’The partfile to open

Returned arguments

ppDoc ‘ Pointer to the newly opened document interface

Note: It is a module's responsibility to ensure that the ppDoc interface is
correctly managed

/1 Previously initialised pointer
CConPt r <I PSWApp> PAPP;

/] our variable to store the returned interface
CconPtr <l PSWboc> pDoc = NULL;

HRESULT hr = pApp->OQpenDocunent ("c:\\ Test Doc. x_b", &pDoc);
i f (SUCCEEDED(hr))

/] ...do something with the pDoc

PS/Workshop V2.1 Developer Guide 65

Interface Functions

OpenNewDocument

HRESULT OpenNewDocunent
(

--- returned argunents ---
| PS\WWboc **ppDoc
)

Opens a new document in PS/Workshop.

Returned arguments
ppDoc

Pointer to the newly opened document interface

Note: It is a module's responsibility to ensure that the ppDoc interface is
correctly managed

Usage:

/1 Previously initialised pointer
CConPt r <I PSWApp> pPApPP;

// our variable to store the returned interface
CconPt r <| PSWWboc> pDoc = NULL;

HRESULT hr = pApp->OpenNewDocunent (&Doc) ;
I f (SUCCEEDED(hr))

/1...do something with the pDoc

CloseDocument

HRESULT Cl oseDocunent
(

--- received argunents ---
| PS\WWboc *pDoc
)

Closes the specified document.

Received arguments
pDoc

The interface of the document to close

Specific Errors
E_INVALID_ARG

The given pDoc could not be found

66

PS/Workshop V2.1 Developer Guide

QueryPSWModulelnterface

HRESULT Quer yPSWWbdul el nterface
(

--- received argunents ---
QU D *riid,

--- returned argunents ---
I Unknown **ppUnknown

)

Queries if a module currently loaded in PS/Workshop supports a particular
interface.

Received arguments

riid ‘ Reference identifier of the interface being requested

Returned arguments

ppUnknown ’Address of pointer which is filled if the query is successful

This function behaves in a similar way to lUnknown::Querylnterface. It allows
one module to communicate with another module, so that modules can provide
functionality to one another.

Note: It is a module's responsibility to ensure that the ppUnknown interface is
correctly released.

RegisterFileOpenFunction

HRESULT Regi sterFi | eOpenFunction
(
--- received argunents ---

| PSWADdI n *pAddI n,

BSTR descri pti on,

| ong Conmandl D

Registers a function to act as a FileOpen handler, and adds an entry to the
PS/Workshop File Open dialog to handle a particular file extension.

Received arguments

pAddl n The IPSWAddIn interface of the module.
description The type of files to associate with this function
Commandl D The ID associated with the function

PS/Workshop V2.1 Developer Guide 67

Interface Functions

If a registered filetype is subsequently opened from the PS/Workshop File Open
dialog, the IPSWEvents::OnCommand function is called on the module with the
Conmmand| D of the registered function and a LPCSTR giving the full path name
of the file to open.

The supplied descri pti on is a specially formatted string that contains
information about the file types to associate with the registered function and the
accompanying text that appears in the PS/Workshop File Open dialog.

The string must be formatted in the following way:

File Description to appear in the dialog
File extensions to be associated with the function

For example, Parasolid text XT files might have the following description:

"Parasolid Files (*.x_t;*.xm _txt)|*. x_t;*. xm_txt|"

Note: The CommandID argument should be unigue within any given module.

For more information about registering handlers for filetypes, see Chapter 8,
“Registering Handlers for Different Filetypes”.

Specific Errors

PSW_ALREADY_REGISTERED |At least one of the given file types is
already registered

RegisterFileSaveAsFunction

HRESULT Regi sterFi | eSaveAsFuncti on
(

--- received argunents ---
| PSWADdI n *pAddI n,
BSTR descri ption,
| ong Conmandl D

)

Registers a function to act as a FileSaveAs handler, and adds an entry to the
PS/Workshop File Save As dialog to handle a particular file extension.

Received arguments

pAddl n The IPSWAddIn interface of the module.
description The type of files to associate with this function
Command| D The ID associated with the function

If the PS/Workshop File Save As dialog is subsequently used to save a
registered filetype, the IPSWEvents::OnCommand function is called on the

68 PS/Workshop V2.1 Developer Guide

module with the Contrandl D of the registered function and a LPCSTR giving the
full path name of the file to save.

The supplied descri pti on is a specially formatted string that contains
information about the file types to associate with the registered function and the
accompanying text that appears in the PS/Workshop File Save As dialog.

The string must be formatted in the following way:

File Description to appear in the dialog |
File extensions to be associated with the function |

For example, JPEG files might have the following description:
"JPG Files (*.jpg;*.jpeg)|*.jpg;*.]peg|”

Note: The CommandID argument should be unigue within any given module.

For more information about registering handlers for filetypes, see Chapter 8,
“Registering Handlers for Different Filetypes”.

Specific Errors

PSW_ALREADY_REGISTERED | At least one of the given file types has
already been registered

|PSWDoc

A.3.1

The IPSWDaoc interface represents each of the PS/Workshop parts (documents)
currently open. For each open document there exists a corresponding IPSWDoc
interface pointer. Those functions called from IPSWDoc only affect the
associated PS/Workshop document.

Summary

The following is a summary of the IPSWDoc interface.

PS/Workshop V2.1 Developer Guide 69

Interface Functions

Properties

Property Type Description

Col our COLORREF The colour of an entity

Docunent Titl e |BSTR The title of the associated document

Dr awLi st | PSWDr awLi st * The IPSWDrawlList associated with
this document

Part Li st | PSWPar t s* The IPSWParts interface associated
with this document

Rol | back | PSWRol | back* The IPSWRollback associated with
this document

Sel ectionLi st |l PSWsel ectionLi st* |The IPSWSelectionList associated
with this document

Functions

Function Description

SaveAsBWP Saves the document as a Windows BMP

SaveAs XGL Saves the document in RealityWave format
SaveAsWWF Saves the document in Extended MetaFile Format
Updat e Forces an update of the document in PS/Workshop

A.3.2 IPSWDoc Properties

Colour

HRESULT get _Col our

(

--- received argunents ---
PK_ENTI TY_t pkEnt,

--- returned argunents ---
COLORREF *pCol our

)

Returns the colour of the given pkEnt .

Received arguments

pkEnt ’ An entity

Returned arguments
pCol our ’The colour of the entity

70 PS/Workshop V2.1 Developer Guide

This works on the following classes of Parasolid entity:

B PK_CLASS face, PK_CLASS edge, PK_CLASS vertex, PK_CLASS_body
B PK_CLASS geom and all subclasses, if the entities are in a draw list

Attempting to return the colour of a geometric entity not in the draw list returns
E_FAIL.

Note: If the entity is in a draw list then the colour returned may not be same as
the colour the entity is currently displayed in.

Specific Errors
PSWERR_NOTANENTITY | The given pkEnt is not a valid entity
PSWERR_INVALIDCLASS | The given pkEnt is not a valid class

HRESULT put _Col our

(

--- received argunents ---
PK_ENTI TY_t pkEnt,
COLORREF pCol our

)

Sets the colour of the given pkEnt .

Received arguments

pkEnt ’An entity

Returned arguments

pCol our ‘The colour of the entity

This works on the following classes of Parasolid entity:

B PK _CLASS face, PK_CLASS edge, PK_CLASS vertex, PK_CLASS body
B PK_CLASS_geom and all subclasses, if the entities are in a draw list

Attempting to set the colour of a geometric entity not in the draw list returns
E_FAIL.

Note: The entity is only drawn in the specified colour if it is not contained in a
draw list.

PS/Workshop V2.1 Developer Guide 71

Interface Functions

Specific Errors

PSWERR_NOTANENTITY The given pkEnt is not a valid entity

DocumentTitle

HRESULT get_DocunentTitle
(

--- returned argunents ---
BSTR *pDocTitl e

Returns the title of the current document.

Returned arguments
pDocTitl e The title of the document

The title of the document appears in the title bar of the PS/Workshop document
window, and is also used in the list of currently open documents in the Window
menu, and the list of recently used files in the File menu.

Note: It is a module's responsibility to ensure that the pDocTi t | e resource is
correctly freed.

HRESULT put_DocunentTitle
(

--- received argunents ---
BSTR DocTitle
)

Sets the title of the current document.

Received arguments
DocTitle The new title of the document

The title of the document appears in the title bar of the PS/Workshop document
window, and is also used in the list of currently open documents in the Window
menu, and the list of recently used files in the File menu.

72

PS/Workshop V2.1 Developer Guide

DrawlList

HRESULT get _Drawki st

--- returned argunents ---
| PSWDr awLi st **ppDr awLi st
)

Returns the IPSWDrawList associated with the document.

Returned arguments

ppDr awLi st The draw list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of ppDr awLi st
is correctly handled.

PartList

HRESULT get_PartlList
(

--- returned argunents ---
| PSWParts **ppPart Li st
)

Returns the IPSWParts associated with the document.

Returned arguments

ppPart Li st The part list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of ppPart Li st
is correctly handled.

Rollback

HRESULT get _Rol | back
(

--- returned argunents ---
| PSWRol | back **ppRol | back
)

Returns the IPSWRollback interface associated with the document.

PS/Workshop V2.1 Developer Guide 73

Interface Functions

Returned arguments

ppRol | back The IPSWRollback associated with the document

A.3.3

Note: It is a module's responsibility to ensure that the lifetime of ppRol | back
is correctly handled.

SelectionList

HRESULT get_Sel ecti onLi st
(

--- returned argunents ---
| PSWsel ecti onLi st **ppSel ecti onLi st
)

Returns the IPSWSelectionList associated with the document

Returned arguments
ppSel ecti onLi st The selection list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of

ppSel ecti onLi st is correctly handled.

|PSWDoc Functions

SaveAsBMP

HRESULT SaveAsBWP
(

--- received argunents ---
LPCTSTR | pszPat hNane
)

Saves the current document in Windows bitmap format (*. bnp).

Received arguments
| pszPat hNane Name to save the file to

74

PS/Workshop V2.1 Developer Guide

SaveAsX GL

HRESULT SaveAs XGL
(

--- received argunents ---
LPCTSTR | pszPat hNane
)

Saves the parts in the document in RealityWave format (* . xgl).

Received arguments

| pszPat hName Name to save the file to

SaveAsWMF

HRESULT SaveAsWF
(

--- received argunents ---
LPCTSTR | pszPat hNane
)

Saves the parts in the document in Enhanced Metafile format (*. enf).

Received arguments

| pszPat hNane Name to save the file to

Update

HRESULT Updat e
(

--- received argunents ---
BOOL render
)

Tells PS/Workshop that the parts in the document have changed and forces an
update.

Received arguments

r ender Whether to force a redraw of the parts in the document

The r ender option controls whether the parts in the document should be
completely redrawn, and is included for performance reasons. Setting r ender to
FALSE allows you to improve the performance of an operation by ensuring that
the document is not redrawn unnecessarily.

PS/Workshop V2.1 Developer Guide 75

Interface Functions

The final call in any sequence of calls to Update should pass r ender as TRUE
to ensure that the display is correctly updated.

| PSW Parts

A.4.1

This interface allows control over the number of Parasolid parts in a
PS/Workshop document. You can use the functionality in this interface to add,
remove, or interrogate parts in a document. It can be obtained from the IPSWDoc
interface, and so only affects the associated document.

As an alternative to this interface, you can use direct calls to Parasolid. You might
find it easier to use Parasolid functionality directly rather than use this interface.
So long as parts have been created in a partition associated with a document,

calling IPSWDoc::Update correctly handles the part list whenever necessary. For
example, a part can be removed from the part list by calling PK_ENTITY _delete,
and then calling Update.

Summary
The following is a summary of the IPSWParts interface.

Properties

Property Type Description

_NewEnum I Unknown* Returns the IPSWEnumParts interface
Count i nt The number of items in the part list
Item PK_PART _t An index into the part list
Functions

Function Description

AddI t ens Adds entities to the part list

| sEnpty Tests for an empty part list condition

I sMenber Tests if an entity is a member of the list
RenoveAl | Removes all items from the list

Renovel t ens

Removes a number of items from the list

Repl acel t ens

Replace a number of items in the list

76

PS/Workshop V2.1 Developer Guide

A.4.2 IPSWParts properties

_NewEnum

HRESULT get __ NewEnum
(

--- returned argunents ---
| Unknown **ppunkEnum
)

Returns the IPSWEnumParts interface associated with the IPSWParts interface.

Returned arguments

ppunkEnum The returned IPSWEnumParts

This differs from get_Item in that get _ NewEnum can be used to return more
than one item at a time, so using this property in preference to get_Item could
improve performance in some situations.

Note: It is a module's responsibility to manage the lifetime of ppunkEnum

You can use the IPSWEnumParts interface to enumerate the parts in the
IPSWParts interface. For more information see the definition of
IPSWEnumParts.

The returned interface only represents a snapshot of the part list. It is not updated
if the part list changes.

Count

HRESULT get _Count
(

--- returned argunents ---
i nt *pCount

Returns the number of entities in the part list.

Returned arguments

pCount The number of entities in the part list

PS/Workshop V2.1 Developer Guide 77

Interface Functions

Item

HRESULT get _ltem

---received argunments ---
int index,

--- returned argunents ---
PK_PART_t *pEnt

)

Returns the pEnt at position i ndex in the part list.

Received arguments

i ndex ‘The index into the part list

Returned arguments

pEnt ’The entity at i ndex

The part listis a zero based index system: i ndex >=0and i ndex <n -1 where
n is the number of entities in the list.

This can only be used to return a single item in the part list at a time. To return
more than one item, use get _NewEnum.

Specific Errors
E_INVALIDARG i ndex is notin range

| PSWParts functions

Addltems

HRESULT Addl tens

--- received argunents ---
int nParts
PK_PART_t *pkParts

)

Adds a list of parts to the part list.

Received arguments

nParts The number of parts

pkParts The parts

78

PS/Workshop V2.1 Developer Guide

| SEmpty

HRESULT | sEnpty
(

--- returned argunents ---
BOOL *Enpty
)

Indicates whether the part list contains any elements.

Returned arguments

Enpty Whether the list is empty or not

Enpt y is TRUE if the list is empty, FALSE otherwise.

IsMember

HRESULT | sMenber

(.

--- received argunents ---
PK_PART t pkPart,

--- returned argunents ---
BOOL *nenber

)

Indicates whether pkPar t is a member of the part list.

Received arguments

pkPar t ’The part to check

Returned arguments

nenber ‘ Whether it is a member

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

RemoveAll

HRESULT RenoveAl |
(
)

Removes all the parts in the part list.

PS/Workshop V2.1 Developer Guide

Interface Functions

Removeltems

HRESULT Renovel t ens

--- received argunents ---
int nParts
PK_PART_t *pkParts

)

Removes the specified parts from the part list.

Received arguments

nParts The number of parts

pkParts The parts

Replaceltems

HRESULT Repl acel t ens

--- received argunents ---
i nt nNewPart Count
PK_PART_t *nNewPart Count

)

Replaces all the parts in the list with the specified pNewPar t s.

Received arguments
nNewPar t Count The number of parts
nNewPar t Count The parts

A.5 | PSW Sel ectionList

This interface allows control over the selection of entities in a PS/Workshop
document. It can be obtained from the IPSWDoc interface, and so only affects
the associated document.

A.5.1 Summary

The following is a summary of the IPSWSelectionList interface.

80 PS/Workshop V2.1 Developer Guide

Properties

Property Type Description

_NewEnum I Unknown* Returns the IPSWEnumSelectionList interface
Col our COLORREF The colour of an item

Count int The number of items in the list

Item PK_ENTITY_t |An item in the list

Functions

Function Description

AddI t ens Adds entities to the list

| sEnpty Tests for an empty list condition

I sMenber Tests if an entity is a member of the list
RenoveAl | Removes all items from the list

Renovel t ens Removes a number of items from the list
Reset Col our Resets the selection colour

Reset Col our 2 Resets the selection colour

Set Col our Sets the selection colour

Set Col our 2 Sets the selection colour

A.5.2 IPSWSelectionList Properties

_NewEnum

HRESULT get __NewEnum

(

--- received argunents ---
PK_CLASS t pkd ass

--- returned argunents ---
I Unknown **ppunkEnum

)

Returns the IPSWEnumSelectionList interface associated with the
IPSWSelectionList.

Received arguments

pkd ass ‘The class of requested entities

Returned arguments

ppunkEnum ’ The returned IPSWEnumSelectionList

PS/Workshop V2.1 Developer Guide

81

Interface Functions

This differs from get_Item in that get NewEnum can be used to return more
than one item at a time, so using this property in preference to get_Item could
improve performance in some situations.

Note: It is a module's responsibility to manage the lifetime of ppunkEnum

The IPSWEnumSelectionList interface can be used to enumerate the entities in
the IPSWSelectionList interface. For more information see the definition of
IPSWEnumSelectionList.

The returned interface only represents a snapshot of the selection list. It is not
updated if the selection list changes.

The pkd ass argument determines the type of entities in the selection list to
enumerate through. This can have the following values:

Value Description

PK_CLASS null Return all entities in the selection list.
PK_CLASS _topol

PK_CLASS_body Enumerate only those entities of the given type.

PK_CLASS face
PK_CLASS_edge
PK_CLASS_vertex

Specific Errors
PSWERR_INVALIDCLASS |Invalid class type

Colour

HRESULT get_Col our
(

--- received argunents ---
PK_ENTI TY_t pkEnt,

--- returned argunents ---
COLORREF *pCol our

)

Returns the selection colour of the given pkEnt .

Received arguments
pkEnt The entity

82 PS/Workshop V2.1 Developer Guide

Returned arguments

pCol our The selection colour of pkEnt

HRESULT put _Col our

)

(
--- received argunents ---
PK_ENTI TY_t pkEnt , --- The entity
COLORREF Col our --- The new sel ection colour for pkEnt

Sets the selection colour of pkEnt .

Received arguments

Returned arguments

Count

HRESULT get _Count
(

--- received argunents ---
PK_CLASS t pkd ass

--- returned argunents ---
i nt *pCount

)

Returns the number of entities in the selection list.

Received arguments

pkd ass ’The class of entities

Returned arguments

pCount ’The number of entities in the selection list

The pkd ass argument determines the type of entities in the selection list to

enumerate. This can have the following values:

PS/Workshop V2.1 Developer Guide

83

Interface Functions

Value Description

PK_CLASS null All entities in the list

PK_CLASS _topol

PK_CLASS_body Only those entities of the given type

PK_CLASS_face
PK_CLASS_edge
PK_CLASS_vertex

Specific Errors
PSWERR_INVALIDCLASS |Invalid class type

Item

HRESULT get _ltem

(

---received argunments ---
PK_CLASS t pkd ass
i nt index,

--- returned argunents ---
PK_PART_t *pEnt

)

Returns the pEnt at position i ndex in the selection list.

Received arguments

pkC ass Class of entity

i ndex The index into the selection list

Returned arguments

pEnt The entity at i ndex

The selection list is a zero based index system: i ndex >=0andi ndex <n-1
where n is the number of entities in the list.

This can only be used to return a single item in the selection list at a time. To
return more than one item, use get__ NewEnum.

Specific Errors
E_INVALIDAR i ndex is notin range
PSWERR_INVALIDCLASS |pkd ass is not a valid class

84

PS/Workshop V2.1 Developer Guide

A.5.3 IPSWSelectionList Functions

Addltems

HRESULT Addltens

int nEnts
PK_ENTITY_t *pEnts
)

--- received argunents ---

Adds a list of parts to the selection list.

Received arguments

nEnt s

The number of entities

pEnt s

The entities

The class of pEnt s can be one of the following:

B PK_CLASS_body
B PK_CLASS_edge
B PK _CLASS vertex
B PK_CLASS face

Specific Errors

PSWERR_INVALIDCLASS

Class of one of the pEnts is invalid

PSWERR_NOTANENTITY

An item in pEnts is not an entity

| sEmpty

HRESULT | sEnpty
(

BOOL *Enpty
)

--- returned argunents ---

Indicates whether the selection list contains any elements.

Returned arguments

Enpty

Whether the list is empty or not

Enpt y is TRUE if the list is empty, FALSE otherwise.

PS/Workshop V2.1 Developer Guide

85

Interface Functions

IsMember

HRESULT I sMenber

(

--- received argunents ---
PK_ENTI TY_t pkEnt,

--- returned argunents ---
BOOL *rmenber

)

Indicates whether pkPart is a member of the selection list.

Received arguments

pkEnt ‘ The entity to check
Returned arguments
menber ’Whether it is a member

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

Specific Errors
PSWERR_INVALIDCLASS | Class of pkEnt is invalid
PSWERR_NOTANENTITY pkEnt is not an entity

RemoveAll

HRESULT RenoveAl |

(
)

Removes all the entities in the selection list.

Removeltems

HRESULT Renovel t ens

--- received argunents ---
int nEnts
PK_ENTITY_t *pkEnts

)

Removes the specified entities from the selection list.

86 PS/Workshop V2.1 Developer Guide

Received arguments

nEnt s ‘ The number of entities

Returned arguments

pkEnt s ’ The entities

Specific Errors
PSWERR_INVALIDCLASS | Class of one of pkEnts is invalid
PSWERR_NOTANENTITY One of pkEnts is not an entity

ResetColour

HRESULT Reset Col our
(
)

Resets the selection colour of all the entities in the document.

The default selection color is specified in the Default Colors tab of the Options
dialog in PS/Workshop.

ResetColour2

HRESULT Reset Col our 2

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts

)

Resets the selection colour for the specified entities.

Received arguments

nEnt s The number of entities

pkEnt s The entities

The default selection color is specified in the Default Colors tab of the Options
dialog in PS/Workshop.

PS/Workshop V2.1 Developer Guide 87

Interface Functions

SetColour

HRESULT Set Col our
(

--- received argunents ---
COLORREF col our
)

Sets the selection colour for all entities in the selection list

Received arguments

col our The new selection colour

SetColour?2

HRESULT Set Col our 2
(

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts,
COLORREF col our

)

Sets the selection colour for the given pkEnt s.

Received arguments

nEnt s The number of entities

pkEnt s The entities

col our The new selection colour
A.6 |PSWDrawlList

This interface allows control over custom drawing of entities in a PS/Workshop
document. It can be obtained from the IPSWDoc interface, and so only affects
the associated document.

A.6.1 Summary

The following is a summary of the IPSWDrawList interface.

88 PS/Workshop V2.1 Developer Guide

Properties

Property Type Description

_NewEnum | Unknown* Returns the IPSWEnumSelectionList interface
Count i nt The number of items in the list

Dr awpt i ons || PSWDr awOpt s* | The draw options for the list

Item PK_ENTITY_t An item in the list

Functions

Function Description

Addl t errs Adds entities to the list

Addl t ems2 Adds entities to the list

| sEnpty Tests for an empty list condition

| sMenber Tests if an entity is a member of the list

Modi fyl t ens | Changes the draw options

RenmoveAl | Removes all items from the list

Rerovel t enrs | Removes a number of items from the list

Updat e Forces an update (re-render) for the given entities

A.6.2 IPSWDrawlList properties

_NewEnum

HRESULT get __ NewkEnum
(

--- returned argunents ---
| Unknown **ppunkEnum
)

Returns the IPSWEnumDrawList interface associated with the IPSWDrawList
interface.

Returned arguments

ppunkEnum The returned IPSWEnumDrawList

This differs from get_Item in that get _ NewEnum can be used to return more
than one item at a time, so using this property in preference to get_Item could
improve performance in some situations.

PS/Workshop V2.1 Developer Guide 89

Interface Functions

Note: It is a module's responsibility to manage the lifetime of ppunkEnum

Count

HRESULT get _Count

--- returned argunents ---
i nt *pCount
)

Returns the number of entities in the draw list.

Returned arguments

pCount The number of entities in the list

DrawOptions

HRESULT get__DrawQOptions

(

--- received argunents ---
PK_ENTI TY_t pkEnt,

--- returned argunents ---
| PSVDr awQpt s ** ppDr anOpt s

Returns the IPSWDrawOpts interface associated with the IPSWDrawList
interface

Received arguments
pkEnt ‘ The entity to obtain the draw options

Returned arguments
ppDr awopt s ‘The returned IPSWDrawOpts interface

Note: It is a module's responsibility to manage the lifetime of ppDr awOpt s.

90 PS/Workshop V2.1 Developer Guide

A.6.3

Item

HRESULT get _ltem

--- received argunents ---
int index,

--- returned argunents ---
PK_ENTITY_t *pEnt

)

Returns the pEnt at position i ndex in the draw list.

Received arguments

i ndex ‘The position in the draw list of the item you require

Returned arguments

pEnt ‘The returned item

The draw listis a zero based index system: i ndex >=0and i ndex <n -1 where
n is the number of entities in the list.

This can only be used to return a single item in the draw list at a time. To return
more than one item, use get _NewEnum.

Specific Errors

E_INVALIDARG i ndex is notin range
| PSWDrawlList functions
Addltems

HRESULT Addl tens

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts

)

Add entities to the draw list using the default draw options

Received arguments
nEnt s The number of entities

pkEnt s The entities to add to list

PS/Workshop V2.1 Developer Guide 91

Interface Functions

The following entity classes are allowed:

PK_CLASS_body

PK_CLASS face

PK_CLASS_edge

PK_CLASS_vertex
PK_CLASS_curve, and all subclasses
PK_CLASS_surf, and all subclasses
PK_CLASS_point

Any given entity must appear once and only once in the draw list. Attempting to
add an item for the second time produces the error
PSWERR_ITEMALREADYEXISTS

Specific Errors

PSWERR_ITEMALREADYEXISTS

Item already exists in list

PSWERR_INVALIDCLASS

Class of one of pkEnt s is invalid

PSWERR_NOTANENTITY

One of pkEnt s is not a valid entity

Addltems2

HRESULT Addlt ens2
(

--- received argunents ---
int nEnts,

PK_ENTITY_t *pkEnts,

| PSVWDr awOpt s * pDr awOpt s
)

Add Items to the draw list using the draw options specified by pDr awOpt s.

Received arguments

nEnt s The number of entities

pkEnt s The entities to add to list

pDr awOpt s Draw Options to apply to pkEnt s

The following entity classes are allowed:

PK_CLASS body

PK_CLASS face

PK_CLASS edge

PK_CLASS_vertex
PK_CLASS_curve, and all subclasses
PK_CLASS_surf, and all subclasses
PK_CLASS_point

92 PS/Workshop V2.1 Developer Guide

Any given entity must appear once and only once in the draw list. Attempting to
add an item for the second time produces the error
PSWERR_ITEMALREADYEXISTS

Specific Errors

PSWERR_ITEMALREADYEXISTS | Item already exists in list

PSWERR_INVALIDCLASS Class of one of pkEnt s is invalid
PSWERR_NOTANENTITY One of pkEnt s is not a valid entity
| sEmpty

HRESULT | sEnpty
(

--- returned argunents ---
BOOL *Enpty
)

Indicates whether the draw list contains any elements.

Returned arguments

Empty Whether the list is empty or not

Enpt y is TRUE if the list is empty, FALSE otherwise.

IsMember

HRESULT I sMenber

(

--- received argunents ---
PK_ENTI TY_t pkEnt,

--- returned argunents ---
BOOL *rmenber

)

Indicates whether pkEnt is a member of the list.

Received arguments

pkEnt ‘ The entity to check

Returned arguments

menber ’Whether it is a member

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

PS/Workshop V2.1 Developer Guide 93

Interface Functions

Modifyltems

HRESULT Modi fyl t ens

--- received argunents ---
int nEnts,
PK_ENTI TY_t *pkEnts,
| PSWDr awQpt s * pDr awOpt s

)

Modifies the draw options for the specified pkEnt s.

Received arguments

nEnt s The number of entities
pkEnt s The entities
pDr awOpt s The new draw options for the pkEnts

Specific Errors
PSWERR_NOTINLIST At least one of pkEnts is not in the list

RemoveAll

HRESULT RenoveAl |

(
)

Removes all the entities in the draw list.

Removeltems

HRESULT Renovel t ens

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts

)

Removes the given entities from the draw list.

Received arguments

nEnt s The number of entities

pkEnt s The entities

94 PS/Workshop V2.1 Developer Guide

Specific Errors

PSWERR_NOTINLIST At least one of pkEnts is not in the selection list

Update

HRESULT Updat e

(

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts

)

Forces an update (re-render) of the given entities in the draw list.

Received arguments

nEnt s The number of entities

pkEnt s The entities

Specific Errors

PSWERR_NOTINLIST At least one of pkEnts is not in the draw list

| PSWDrawOpts

A.7.1

This interface can be obtained from IPSWDrawList (in which case it contains the
current draw options). It provides control over how particular entities are
displayed in the draw list.

IPSWDrawOpts is somewhat different from other interfaces, in that it can also be
instantiated and passed to the IPSWDrawList interface (in which case it contains
the new draw options). To instantiate this interface, you need to use the
CoCreatelnstance function, as described in Section 3.2, “Creating a COM
object”.

Summary

The following is a summary of the IPSWDrawOpts interface.

PS/Workshop V2.1 Developer Guide 95

Interface Functions

Properties
Property Type Description
dip BOOL Clip entity to part box (FALSE)
Col our COLORREF | Colour to draw entity (-1)
Dr awSense BOOL Whether to display sense of entity
(FALSE)
N U i nt Number of U param hatch lines (0)
N V i nt Number of V param hatch lines (0)
Tol erance BOOL Whether to display tolerance of entity
(FALSE)
Tol er anceCol our COLORREF | Colour to draw tolerance in (-1)
Functions
Function Description
Init Initialise draw options
Reset Reset draw options to their default values

A.7.2 IPSWDrawOpts Properties

Clip

BOOL *pVal

)

HRESULT get_dip

--- returned argunents ---

Returns the clip option for the entity.

Returned arguments

pVal

Clip status

This option is currently ignored.

(
BOOL newval

)

HRESULT put_dip

--- received argunents ---

Sets the clip option for the entity.

96

PS/Workshop V2.1 Developer Guide

Received arguments

newval New clip status

This option is currently ignored.

Colour

HRESULT get_Col our
(

--- returned argunents ---
COLORREF *pCol our
)

Returns the draw colour for the entity.

Returned arguments

pCol our The draw colour of entity

Specific Errors

pCol our is setto -1

S FALSE The draw colour has not been set, in which case

HRESULT put _Col our
(

--- received argunents ---
COLORREF Col our
)

Sets the draw colour for the entity.

Received arguments

Col our The new draw colour for entity

Specifying Col our as -1 draws the entity in the default colour.

PS/Workshop V2.1 Developer Guide

97

Interface Functions

DrawSense
The DrawSense flag is only valid for entities of the following classes:

B PK_CLASS face
B PK_CLASS_edge
B PK _CLASS curve
B PK_CLASS_surf

If this flag is set for other class types it is ignored.

In the case of faces and surfaces, setting DrawSense to TRUE displays a
face/surface normal in the same colour as the face/surface. For edges/curves an
arrow is drawn depicting the direction going from the low to the high parameter.

HRESULT get _Dr awSense
(

--- returned argunents ---
BOOL *pVal ue

Gets the draw sense option for the entity

Returned arguments
pVal ue Whether to draw the sense of the entity

HRESULT put _Dr awSense
(

--- received argunents ---
BOOL newval
)

Sets the draw sense for the entity

Received arguments

newval The new draw sense for entity

N_U

The N_U flag is only valid for entities of class PK_CLASS_surf. It is ignored for
all other entity classes.

98 PS/Workshop V2.1 Developer Guide

HRESULT get N U

--- returned argunents ---
int *pVal

Returns the number of u parameter lines for the entity.

Returned arguments
pVal The number of U parameter lines

HRESULT put_N U
(

--- received argunents ---
int newval
)

Sets the number of U parameter lines for the entity.

Received arguments
newval The new number of U parameter lines

Specific Errors
E_INVALIDARG The pVal argument < 0

N V
The N_V flag is only valid for entities of class PK_CLASS_surf. It is ignored for
all other entity classes.

HRESULT get N V
(

--- returned argunents ---
int *pVa

Returns the number of v parameter lines for the entity.

Returned arguments
pVal The number of V parameter lines

PS/Workshop V2.1 Developer Guide 99

Interface Functions

HRESULT put_N V

--- received argunents ---
i nt newval
)

Sets the number of V parameter lines for the entity.

Received arguments

newval The new number of V parameter lines

Specific Errors
E_INVALIDARG The pVal argument < 0

Tolerance

This option is only valid for entities of class PK_CLASS_edge and class
PK_CLASS vertex. It is ignored for all other entity classes. In addition, this
option only has a visible effect if the edge or vertex is tolerant.

B Fortolerant edges, a tube is displayed around the edge with the same radius
as the edge tolerance.

B For tolerant vertices, a sphere based on the point of the vertex is displayed
with the same radius as the vertex tolerance.

HRESULT get_Tol erance

(

--- returned argunents ---
BOOL *pVal

)

Returns whether the tolerance of an entity should be displayed.

Returned arguments

pVal Whether to display the tolerance of an entity

HRESULT put _Tol erance
(

--- received argunents ---
BOOL newval
)

Sets whether the tolerance of an entity should be displayed

100 PS/Workshop V2.1 Developer Guide

Received arguments

newval Whether to display the tolerance of an entity

ToleranceColour

This option is only used if the Tolerance option is set. As with Tolerance , this
option is only valid for entities of class PK_CLASS_edge and
PK_CLASS vertex. Itis ignored for all other entity classes.

If the ToleranceColour is not set then the tolerance is displayed in the same
colour as the entity.

HRESULT get _Tol er anceCol our
(

--- returned argunents ---
COLORREF *pVal
)

Returns the colour in which to draw the tolerance of an entity.

Returned arguments

pVal The colour

This function is currently not implemented and returns E_NOTIMPL.

HRESULT put _Tol er anceCol our
(

--- received argunents ---
COLORREF newVal
)

Sets the colour in which to draw the tolerance of an entity.

Received arguments

newval The colour

This function is currently not implemented and returns E_NOTIMPL.

PS/Workshop V2.1 Developer Guide 101

Interface Functions

A.7.3 IPSWDrawOpts Functions

Init

HRESULT I nit

--- received argunents ---
int n_u,
int n_v,
COLORREF col
BOOL cli pToPart Box,
BOOL dr awSense,
BOOL tol erance

)

Allows a number of draw options to be set in one function call.

Received arguments

n_u N_U

n_v N_V

col Colour

cl i pToPart Box Clip
drawSense DrawSense
tol erance Tolerance

Specific Errors
E_INVALIDARG Eithern_uorn_vis<0

Reset

HRESULT Reset
(
)

Resets the draw options to their default values.

A.8 | PSWRollback

This interface provides access to Parasolid partitioned rollback functionality. It
can be obtained from the IPSWDoc interface, and so only affects the associated
document.

102 PS/Workshop V2.1 Developer Guide

A.8.1

A.8.2

Note: You should use these wrapper functions rather than calling Parasolid
PK_PMARK functions directly.

Summary
The following is a summary of the IPSWRollback interface.
Functions
Function Description
Del et ePMar k Deletes an existing pMark
MakePMar k Creates a new pMark
Rol | backTo Rollbacks to an existing pMark

|PSWRollback functions

DeletePM ark

HRESULT Del et ePMar k
(

--- received argunents ---
PK_PMARK_ t pMar k
)

Deletes an existing pMar k.

Received arguments

pMar k The pMark

M akePM ark

HRESULT MakePMar k
(

--- returned argunents ---
PK_PMARK_t *pMar k
)

Creates a new pMar k.

Returned arguments

pMar k The new pMark

PS/Workshop V2.1 Developer Guide

103

Interface Functions

RollbackTo

HRESULT Rol | backTo

(

--- received argunents ---
PK_PMARK t *pMar Kk,
BOCL del

)

Rollback the document to the specified pMar k.

Received arguments
pMar k The pMark to roll to
del Whether to delete pMar k

The del argument controls whether to delete pMar k after rolling back to it. If del
is TRUE then pMar Kk is deleted, and also returned by the function as
PK_ENTITY_null.

Note: This function can be used to either rollback or rollforward to a pMar k.

A.9 |PSWENhumDrawlList

Provides enumeration over the entities in the draw list

This interface can be obtained from the IPSWDrawList interface using the
IPSWDrawlList::_ NewEnum property. Once obtained the interface can be used to
enumerate over all the entities in the IPSWDrawList. Note that the _NewEnum
property returns a snapshot of the IPSWDrawList and is not updated if the draw
list is changed externally.

A.9.1 Summary

The following is a summary of the IPSWEnumDrawList interface.

Functions
Function Description
d one Creates a copy of this enumeration
Next Returns the next set of items in the enumeration
Reset Resets the enumeration sequence to the beginning
Ski p Skips over the next specified number of elements in the
enumeration

104 PS/Workshop V2.1 Developer Guide

A.9.2 IPSWENnumDrawlList functions

Clone

HRESULT Cl one

--- returned argunents ---
| PSWEnunDr awli st **ppenum
)

Creates another enumerator that contains the same enumeration state as the
current one.

Returned arguments
ppenum The returned IPSWEnumDrawList

Note: It is a module's responsibility to ensure that the lifetime of ppenumis
correctly handled

If the function succeeds then ppenumis a pointer to a new IPSWEnumDrawList.
If the function fails then the value of ppenumis undefined.

Next

HRESULT ~ Next
(

--- received argunents ---
ULONG cel t,

--- returned argunents ---
PK_ENTITY_t *rgelt,
ULONG *pcel t Fet ched

)

Retrieves the next cel t items in the enumeration sequence.

Received arguments

cel t The number of elements requested

Returned arguments

rgelt Returned entities

pcel t Fet ched The number of entities actually returned (may be NULL)

PS/Workshop V2.1 Developer Guide 105

Interface Functions

If there are fewer than the requested items left in the sequence, this function
retrieves the remaining elements. The number of elements actually retrieved is
returned in the pcel t Fet ched argument.

Reset

HRESULT Reset
(
)

Resets the enumeration sequence to the beginning.

Skip

HRESULT ~ Ski p
(

--- received argunents ---
ULONG cel t
)

Skips over the next specified number of elements in the enumeration sequence.

Received arguments

cel t ‘ The number of elements to skip

A.10 |PSWENhumParts

Provides enumeration over the entities in the part list

This interface can be obtained from the IPSWParts interface using the
IPSWParts::_ NewEnum property. Once obtained the interface can be used to
enumerate over all the entities in the IPSWParts. Note that the _NewEnum
property returns a snapshot of the IPSWParts and is not updated if the number
of parts in the document are changed externally.

A.10.1 Summary

The following is a summary of the IPSWEnumParts interface.

Functions

Function Description

d one Creates a copy of this enumeration

Next Returns the next set of items in the enumeration

106 PS/Workshop V2.1 Developer Guide

Function Description

Reset Resets the enumeration sequence to the beginning

Ski p Skips over the next specified number of elements in the
enumeration

A.10.2 IPSWENnumParts functions

Clone

HRESULT Cl one

--- returned argunents ---
| PSVEnunParts **ppenum
)

Creates another enumerator that contains the same enumeration state as the
current one

Returned arguments
ppenum The returned IPSWEnumParts

Note: It is a module's responsibility to ensure that the lifetime of ppenumis
correctly handled.

If the function succeeds then ppenumis a pointer to a new IPSWEnumParts. If it
fails then the value of ppenumis undefined.

N ext

HRESULT Next

--- received argunents ---
ULONG cel t,

--- returned argunents ---
PK_PART_t *rgelt,
ULONG *pcel t Fet ched

)

Retrieves the next cel t items in the enumeration sequence.

PS/Workshop V2.1 Developer Guide 107

Interface Functions

Received arguments

cel t The number of elements requested

Returned arguments

rgelt Returned entities

pcel t Fet ched The number of entities actually returned (may be NULL)

If there are fewer than the requested items left in the sequence, this function
retrieves the remaining elements. The number of elements actually retrieved is
returned in the pcel t Fet ched argument.

Reset

HRESULT Reset
(
)

Resets the enumeration sequence to the beginning.

Skip

HRESULT ~ Ski p
(

--- received argunents ---
ULONG cel t
)

Skips over the next specified number of elements in the enumeration sequence.

Received arguments

cel t ‘ The number of elements to skip

A.1l1 |PSWENumSelectionList

Provides enumeration over the entities in the selection list.

This interface can be obtained from the IPSWSelectionList interface using the
IPSWSelectionList::_NewEnum property. Once obtained the interface can be
used to enumerate over all the entities in the IPSWSelectionList. It should be
noted that the _NewEnum property returns a snapshot of the IPSWSelectionList
and is not updated if the selection list is changed externally.

108 PS/Workshop V2.1 Developer Guide

A.11.1 Summary

The following is a summary of the IPSWEnumSelectionList interface.

Functions
Function Description
d one Creates a copy of this enumeration
Next Returns the next set of items in the enumeration
Reset Resets the enumeration sequence to the beginning
Ski p Skips over the next specified number of elements in the
enumeration

A.11.2 IPSWENnumSelectionList functions

Clone

HRESULT Cl one
(

--- returned argunents ---
| PSWEnuntel ecti onLi st **ppenum
)

Creates another enumerator that contains the same enumeration state as the
current one.

Returned arguments
ppenum The returned IPSWEnumSelectionList

Note: It is a module's responsibility to ensure that the lifetime of ppenumis
correctly handled

If the function succeeds then ppenumis a pointer to a new
IPSWEnumSelectionList. If it fails then the value of ppenumis undefined.

PS/Workshop V2.1 Developer Guide 109

Interface Functions

Next

HRESULT Next

(

--- received argunents ---
ULONG cel t,

--- returned argunents ---
PK_ENTITY_t *rgelt,
ULONG *pcel t Fet ched

)

Retrieves the next cel t items in the enumeration sequence.

Received arguments

cel t The number of elements requested

Returned arguments

rgelt Returned entities

pcel t Fet ched The number of entities actually returned (may be NULL)

If there are fewer than the requested items left in the sequence, this function
retrieves the remaining elements. The number of elements actually retrieved is
returned in the pcel t Fet ched argument.

Reset

HRESULT Reset
(
)

Resets the enumeration sequence to the beginning.

SKkip

HRESULT Ski p
(

--- received argunents ---
ULONG cel t
)

Skips over the next specified number of elements in the enumeration sequence.

Received arguments
cel t The number of elements to skip

110 PS/Workshop V2.1 Developer Guide

A.12 |PSWView

This interface is superseded by IPSWView?2.

A.13 IPSWView?2

Each document open in PS/Workshop has one or more views attached. Each
IPSWView is associated with an IPSWDoc.

Note: In the current version of PS/Workshop there is only one IPSWView
associated with each IPSWDoc.

A.13.1 Summary

The following is a summary of the IPSWView interface.

Properties

Property Type Description

Vi ewMat ri x PK_TRANSF _t The view matrix

Current Operati on pswCur rent Qper ati on | The current operation

Vi ewStyl e pswi ewsSt yl e The current view style

Sel ectionFilter pswSel ecti onFil ter The current selection filter
Render Facet Opt s voi d* The facet rendering options
Render Li neQpt s voi d* The line rendering options
Vi ewCentre doubl e* The current view centre
Functions

Function Description

Fi t ToScreen Resizes the view to fit the part

Reset Render Opti ons | Resets the render options to their default

Scal eVi ew Scales the view by a given factor

ZoonToEntities Zooms the view to the given entities

Rot at eVi ew Rotates the view about a given axis

Updat e Forces an updated (re-render) of the given entities

PS/Workshop V2.1 Developer Guide 111

Interface Functions

A.13.2 IPSWView?2 properties

ViewM atrix

HRESULT get_Vi ewMatri x
(

--- returned argunents ---
PK_TRANSF_t *pVal
)

Returns the current view matrix.

Returned arguments

pVal The view matrix

HRESULT put_Vi ewMatri x
(

--- received argunents ---
PK_TRANSF t newval
)

Sets the current view matrix.

Received arguments

newval The new view matrix

CurrentOperation

HRESULT get_Current Operation
(

--- returned argunents ---
pswCurrent Operati on *pVal

Returns the current PS/Workshop operation.

Returned arguments

pVal The current operation

112 PS/Workshop V2.1 Developer Guide

pVal may be one of the following values:

B pswCurrentOperationldle
pswCurrentOperationRotate
pswCurrentOperationZoom
pswCurrentOperationZoomWindow
pswCurrentOperationPan

HRESULT put_Current Operati on
(

--- received argunents ---
pswCur r ent Oper ati on newval

Sets the current PS/Workshop operation.

Received arguments

newval The new operation

newVal may be one of the following values:
B pswCurrentOperationldle

B pswCurrentOperationRotate

B pswCurrentOperationZoom

B pswCurrentOperationZoomWindow
B pswCurrentOperationPan
ViewStyle

HRESULT get_ViewsStyle
(

--- returned argunents ---
pswi ewStyl e *pVal

Returns the current view style.

Returned arguments

pVal The view style

PS/Workshop V2.1 Developer Guide 113

Interface Functions

pVal may be one of:

pswViewStyleShaded
pswViewStyleWireframe
pswViewStyleWireAndSils
pswViewStyleShadedWireAndSils
pswViewStyleHidden
pswViewStyleShadedWireframe

HRESULT put_ViewStyle
(

--- received argunents ---
pswWi ewSt yl e newval
)

Sets the current view style.

Received arguments

newval The view style

newval may be one of:

pswViewStyleShaded
pswViewStyleWireframe
pswViewStyleWireAndSils
pswViewStyleShadedWireAndSils
pswViewStyleHidden
pswViewStyleShadedWireframe

SelectionFilter

HRESULT get_Sel ectionFilter

--- returned argunents ---
pswSel ectionFilter *pVal

Returns the current selection filter.

Returned arguments

pVal The selection filter

114 PS/Workshop V2.1 Developer Guide

pVal may be any combination of the following flags:

pswSelectionFilter_None
pswSelectionFilter_Edge
pswSelectionFilter_Face
pswSelectionFilter_Vertex
pswSelectionFilter_Body
pswSelectionFilter_All

HRESULT put_Sel ectionFilter
(

--- received argunents ---
pswSel ectionFil ter newal
)

Sets the current selection filter.

Received arguments

newval The selection filter

newVal may be any combination of the following flags:

pswSelectionFilter_None
pswSelectionFilter_Edge
pswSelectionFilter_Face
pswSelectionFilter_Vertex
pswSelectionFilter_Body
pswSelectionFilter_All

RenderFacetOpts

HRESULT get_Render Facet Opts

--- returned argunents ---
voi d *pVal

Returns the current facetting options.

Returned arguments

pVal The facetting options

Note: pVal must to be castto a PK_TOPOL_facet mesh_o_t* structure.

PS/Workshop V2.1 Developer Guide 115

Interface Functions

HRESULT put _Render Facet Opts
(

--- returned argunents ---
voi d *newal
)

Sets the current facetting options.

Returned arguments
newval

The facetting options

Note: newval must be a PK_TOPOL_facet_ mesh_o_t* structure.

RenderLineOpts

HRESULT get_RenderLi neOpts
(

--- returned argunents ---
voi d *pVal
)

Returns the current line rendering options.

Returned arguments

pVal The line rendering options

Note: pVal must be castto a PK_TOPOL_ render_line_o_t* structure.

HRESULT put _Render Li neQpts
(

--- returned argunents ---
voi d *newal
)

Sets the current line rendering options.

Returned arguments
newval

The line rendering options

116 PS/Workshop V2.1 Developer Guide

Note: newval must be a PK_TOPOL_render_line_o_t* structure.

ViewCentre

HRESULT get_ViewCentre
(

--- returned argunents ---
doubl e pVal [3]
)

Returns the current view centre

Returned arguments

pVal The view centre

pVal is the current view centre where:

B pVal [0] represents the x component
B pVal [1] represents the y component
B pVal [2] represents the z component

HRESULT put_ViewCentre
(

--- received argunents ---
doubl e newval [3]
)

Sets the current view centre

Received arguments

newval The view centre

newVal is the current view centre where:

B newVal [0] represents the x component
B newVal [1] represents the y component
B newVal [2] represents the z component

PS/Workshop V2.1 Developer Guide

117

Interface Functions

A.13.3

IPSWView?2 functions

FitToScreen

HRESULT Fit ToScr een
(
)

Recalculates the view to fit all the parts in the document on the screen.

ResetRenderOptions

HRESULT Reset Render Opti ons
(
)

Resets the render options to their default values.
This function returns full control of the rendering to PS/Workshop.

ScaleView

HRESULT Scal eVi ew

--- received argunents ---
doubl e factor
)

Scales the view by the given f act or.

Received arguments
fact or Scale to apply to view

If f act or <1 then the view zooms out. If f act or is > 1 then the view zooms in.

Specific Errors
E_INVALIDARG factor must be >0

118

PS/Workshop V2.1 Developer Guide

ZoomToEntities

int nEnts,
PK_ENTITY_t *pkEnts

)

HRESULT ZoonToEntities

---received argunents ---

Zooms to the given entities.

Received arguments

nEnt s

The number of entities

pkEnt s

The entities to zoom to

The following classes of entities are supported:

PK_CLASS_assembly
PK_CLASS_body
PK_CLASS face
PK_CLASS_edge
PK_CLASS_vertex
PK_CLASS_point

PK_CLASS_curve, and all subclasses
PK_CLASS_surf, and all subclasses

Specific Errors

PSWERR_INVALIDCLASS

At least one of pkEnts is of the wrong class

PSWERR_NOTANENTITY

At least one of pkEnts is not a valid entity

RotateView

HRESULT Rot at eVi ew
(

doubl e angl e,
doubl e *axi s

)

--- received argunents ---

Rotates the view about the given axi s.

PS/Workshop V2.1 Developer Guide

119

Interface Functions

Received arguments

angl e Angle to rotate view in radians

axi s Axis to rotate view about

B axi s[0] represents the x component of axis
B axi s[1] represents the y component of axis
B axi s[2] represents the z component of axis

Specific Errors
E_INVALIDARG axis is not a unit vector

Update

HRESULT Updat e

--- received argunents ---
int nEnts,
PK_ENTITY_t *pkEnts

)

Forces an update (re-render) of the given entities.

Received arguments

nEnt s The number of entities

pkEnt s The entities

This function updates the folllowing Parasolid entity classes:

PK_CLASS_body

PK_CLASS_assembly

PK_CLASS face

PK_CLASS_edge

PK_CLASS_vertex

PK_CLASS_curve, and all subclasses (if in the draw list)
PK_CLASS_surf, and all subclasses (if in the draw list)
PK_CLASS_point (if in the draw list)

A.14 |PSWAddIn

Provides the connection/disconnection mechanism for a module. Every
PS/Workshop module must support this interface.

120 PS/Workshop V2.1 Developer Guide

A.14.1 Summary

The following is a summary of the IPSWAddIn interface.

Functions

Function

Description

OnConnection

Called when a module is first loaded

OnDi sconnecti on

Called when a module is unloaded

A.14.2 IPSWAddIn functions

OnConnection

(

)

HRESULT OnConnecti on

--- received argunents ---
I D spat ch *pl PSWApp,
I O spat ch *pl PSWAddI n,
PswConnect Mode eConnect Mode

This function is called whenever a module is loaded.

Received arguments

pl PSWApp

The PS/Workshop IDispatch interface

pl PSWAddI n

The PS/Workshop IPSWAddIn interface

eConnect Mbde

How the module is loaded

The eConnect Mbde argument determines how the module was loaded. It can
have one of the following values:

Value

Description

pswConnect At St art Up

The module has been loaded at startup

pswConnect ByUser

A user has requested this module to be loaded

pswConnect Ext ernal |y

The module has been loaded from an external
source

PS/Workshop calls this function on a module when it attempts to load it. If this

returns an error code then PS/Workshop unloads the module. In the default

implementation this calls CAddonMain:StartModule.

PS/Workshop V2.1 Developer Guide

121

Interface Functions

OnDisconnection

HRESULT OnDi sconnecti on
(

--- received argunents ---
pswhDi sconnect Mbde Di sconnect Mbde

This function is called when the module is disconnected.

Received arguments

Di sconnect Mode How the module came to be unloaded

The pswDi sconnect Mbde argument determines how the module came to be
unloaded. It may have the following values:

Value Description

pswhDi sconnect At Shut down | The module is being disconnected as a result of
PS/Workshop shutting down

pswDi sconnect ByUser The module has been unloaded at the request
of the user

pswhi sconnect External |y | The module has been unloaded at the request
of some external process

This function on a module is called immediately before the module is unloaded.
It is suggested that during this function the module ensures that all references to
PS/Workshop interfaces are released.

A.15 | PSWEvents

Provides notification of PS/Workshop events to a module

A.15.1 Summary

The following is a summary of the IPSWEvents interface.

Functions

Function Descriptoin

OnConmand Called whenever a menu item added by a module is
selected

OnCommandHel p Called to provide help on a menu item added by a
module

122 PS/Workshop V2.1 Developer Guide

Function

Descriptoin

OnCommandUpdat eUl

Called to update the Ul of a menu item added by a
module

OnDocd ose

Called whenever a PS/Workshop document is closed

OnDocOpen

Called whenever a PS/Workshop document is opened

OnPar t Change

Called whenever the parts in a document have changed

OnSel ect Topol s

Called whenever a selection event occurs

OnVi ewCl ose

Called whenever a view is closed

Vi ewOpen

Called whenever a view is opened

A.15.2 IPSWEvents

OnCommand

functions

| ong Conmandl D,
void *| param

HRESULT OnConmand
(

--- received argunents ---

Called whenever a menu item added by a module is selected, or a file of a
registered filetype is chosen.

Received arguments

Command| D

The ID associated with the command

| param

Extra information relating to the command

PS/Workshop V2.1 Developer Guide

123

Interface Functions

This event may occur in the following cases:

Case

Comments

The user chose a menu item
previously added by the
module.

In this case, Conmandl Dis the ID previously
passed to IPSWApp::AddMenultem or
AddMenultem2. The | par amargument is
NULL in this instance.

The user has selected a file of
a registered filetype from
either the File Open or File

In this case, Conmandl Dis the ID of the
registered FileOpen or FileSaveAs handler. The
| par amargument contains the filename to

Save As dialog. open or save, as a LPCSTR.

The module must have already registered a
custom FileOpen or FileSaveAs handler using
IPSWApp::RegisterFileOpenFunction or
RegisterFileSaveAsFunction for this case to be
handled.

OnCommandHelp

HRESULT OnCommandHel p

--- received argunents ---
| ong hFrameWhd,
| ong Hel pCommrandl D,
| ong Conmandl D

Called whenever help is requested about a menu item added by a module.
This function is currently not implemented and returns E_NOTIMPL.

OnCommandU pdateUl

HRESULT OnConmandUpdat eUl
(.
--- received argunents ---
| ong Conmandl D,
--- returned argunents ---
| ong *CommrandFl ags,
BSTR *Menul t enifext ,
| ong *Bitmapl D

Called to update the user interface for a menu item added by a module.

124 PS/Workshop V2.1 Developer Guide

Received arguments
Command! D The ID associated with the command

Returned arguments

ComandFl ags Whether to enable/disable this command
Menul t enfText The text to associate with this menu entry
Bi t mapl D Not used

This function is called by the framework to update the status of user added menu
items. Conmand| Dis the ID previously passed to IPSWApp::AddMenultem or
AddMenultem2 for a particular menu item.

You can use CommandFl ags to change the status of a menu item. It can take
any of the following values:

Value Description
pswCmdUl_Enable Enable the menu item if it is currently disabled.
pswCmdUl_Disable Disable the menu item if it is currently enabled.

pswCmdUl_Checked Place a tick mark next to the menu item.

pswCmdUI_Unchecked |Remove the tick mark next to the menu item.

pswCmdUI_ChangeText | Use the text specified in Menul t enTText as the text
for the menu item.

pswCmdUl_UseBmp Use the bitmap specified in Bi t mapl Das the bitmap
associated with the Cormandl D.

The Menul t enifext argument controls the text that is associated with the menu
item, so that the text seen by the user can be changed on the fly, in conjunction
with the value of CormandFl ags.

Note: The BitmaplID argument is currently ignored.

OnDocClose

HRESULT OnDocd ose
(

--- received argunents ---
| PS\Wboc* pDoc
)

Called whenever a PS/Workshop document is closed.

PS/Workshop V2.1 Developer Guide 125

Interface Functions

Received arguments

pDoc ‘The IPSWDoc interface associated with this document

This event only occurs after the associated OnViewClose event.

OnDocOpen

HRESULT ~ OnDocQpen
(

--- received argunents ---
| PS\Wboc* pDoc
)

Called whenever a PS/Workshop document is opened.

Received arguments

pDoc ‘The IPSWDoc interface associated with this document

This event occurs before the associated OnViewOpen event.

OnPartChange

HRESULT OnPart Change

(
)

Called whenever the parts in a document change.

This function is called whenever the number of parts in any document change, or
the parts themselves change. It is not called if any sub-entities of the part are
modified.

OnSelectTopols

HRESULT OnSel ect Topol s
(
)

Called whenever a selection event occurs inside PS/Workshop.

This function is called whenever an entity is selected or deselected in any
document. The selected entities can then be found using the IPSWSelectionList
interface.

126 PS/Workshop V2.1 Developer Guide

OnViewClose

HRESULT OnVi ewd ose

(

--- received argunents ---
| PS\WWboc * pDoc,
| PSW/i ew *pVi ew

)

Called whenever the PS/Workshop view is closed.

Received arguments

pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

This function is called before any subsequent call to OnDocClose.
As of PS/Workshop 2.1, pView can be query-interfaced to IPSWView.

OnViewOpen

HRESULT OnVi ewOpen

(

--- received argunents ---
| PSWboc *pDoc,
| PSW/i ew *pVi ew

)

Called whenever the PS/Workshop view is opened.

Received arguments

pDoc The IPSWDoc interface associated with this view

pVi ew The IPSWView interface associated with this view

This function is called after any call to OnDocOpen.

PS/Workshop V2.1 Developer Guide 127

I_Interface Functions

128 PS/Workshop V2.1 Developer Guide

Known |l ssues

This chapter lists known issues with the current version of PS/Workshop.

Modules written for previous versions of PS/Workshop and linked to
edsps111. | i b will need to be recompiled and linked to psker nel . | i b to load
successfully

Developers of modules for earlier versions of PS/Workshop should note that the
structure of the new COM template module has been kept as close as possible
to the original template module.

The default module created by the PS/Workshop AppWizard uses the delayload
mechanism when it is built. Doing this means that you can successfully build the
module without having psker nel . dl | presentin the same directory as the
module DLL when the module is first created. It does, however, cause a warning
to be generated when the module is compiled for the first time.

PS/Workshop V2.1 Developer Guide 129

I_Known Issues

130 PS/Workshop V2.1 Developer Guide

	Parasolid V13.0
	PS/Workshop V2.1 Developer Guide
	June 2001
	Important Note
	© Copyright 2001 Unigraphics Solutions Inc. All rights reserved

	Trademarks
	Introduction
	1.1 Introduction
	1.2 Installation
	1.3 PS/Workshop SDK directory structure
	1.4 The PS/Workshop module wizard

	A Short Tutorial
	2.1 Introduction
	2.2 Creating a new project
	2.3 Adding a Hollow menu item
	2.4 Adding a handler for the OnCommand event
	2.5 Writing code to perform the hollow

	Using COM in PS/Workshop
	3.1 What is a COM object?
	3.2 Creating a COM object
	3.2.1 Creating a COM object indirectly
	3.2.2 Creating a COM object directly

	3.3 Using COM interfaces
	3.3.1 Calling public methods
	3.3.2 Testing for success or failure

	3.4 Managing the lifetime of COM objects
	3.4.1 Managing interfaces in method arguments
	3.4.2 IUnknown
	QueryInterface
	AddRef
	Release

	3.4.3 ATL smart interface pointers

	3.5 Converting between data-types
	3.5.1 Converting from BSTR to CString
	3.5.2 Creating a BSTR

	Event Handling Within A Module
	4.1 General message handling
	4.2 Handling menu command events

	Module Structure
	5.1 CAddinImpl
	5.2 CXXXApp
	5.2.1 CXXXApp Functions
	InitInstance
	ExitInstance

	5.3 CAddonMain
	5.3.1 Summary
	5.3.2 CAddonMain functions
	CAddonMain
	OnDocClose
	OnDocOpen
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen
	OnCmdMsg
	GetActiveDocument
	StartModule
	OnAppDestroy

	5.4 CAddonDoc
	5.4.1 Summary
	5.4.2 CAddonDoc functions
	CAddonDoc
	OnDocClose
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen
	OnCmdMsg
	GetDocumentInterface
	GetSelectionInterface
	GetDrawInterface
	GetPartInterface
	GetRollbackInterface
	GetActiveView
	GetParts
	OnMyFunction

	5.5 CAddonView
	5.5.1 Summary
	5.5.2 CAddonView functions
	CAddonView
	OnCmdMsg
	GetViewInterface

	The PS/Workshop Interfaces
	Adding a New Menu Item to PS/Workshop
	Registering Handlers for Different Filetypes
	The Draw List
	9.1 Specifying which parts to render
	9.2 Setting drawing options

	Interface Functions
	ActiveDocument
	Documents
	StatusBarText
	Version
	AddMenuItem
	AddMenuItem2
	OpenDocument
	OpenNewDocument
	CloseDocument
	QueryPSWModuleInterface
	RegisterFileOpenFunction
	RegisterFileSaveAsFunction
	Colour
	DocumentTitle
	DrawList
	PartList
	Rollback
	SelectionList
	SaveAsBMP
	SaveAsXGL
	SaveAsWMF
	Update
	_NewEnum
	Count
	Item
	AddItems
	IsEmpty
	IsMember
	RemoveAll
	RemoveItems
	ReplaceItems
	_NewEnum
	Colour
	Count
	Item
	AddItems
	IsEmpty
	IsMember
	RemoveAll
	RemoveItems
	ResetColour
	ResetColour2
	SetColour
	SetColour2
	_NewEnum
	Count
	DrawOptions
	Item
	AddItems
	AddItems2
	IsEmpty
	IsMember
	ModifyItems
	RemoveAll
	RemoveItems
	Update
	Clip
	Colour
	DrawSense
	N_U
	N_V
	Tolerance
	ToleranceColour
	Init
	Reset
	DeletePMark
	MakePMark
	RollbackTo
	Clone
	Next
	Reset
	Skip
	Clone
	Next
	Reset
	Skip
	Clone
	Next
	Reset
	Skip
	ViewMatrix
	CurrentOperation
	ViewStyle
	SelectionFilter
	RenderFacetOpts
	RenderLineOpts
	ViewCentre
	FitToScreen
	ResetRenderOptions
	ScaleView
	ZoomToEntities
	RotateView
	Update
	OnConnection
	OnDisconnection
	OnCommand
	OnCommandHelp
	OnCommandUpdateUI
	OnDocClose
	OnDocOpen
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen

	Known Issues

