
Parasolid V13.0

PS/Workshop V2.1 Developer Guide

June 2001

Important Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc. 

© Copyright 2001 Unigraphics Solutions Inc. All rights reserved 
Restricted Rights Legend: This commercial computer software and related documentation are 
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to 
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for 
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian 
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable. 
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation 
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the 
terms of the applicable license agreement. Any copying of this documentation, except as permitted 
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be 
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any 
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

Cambridge CB2 1DP
UK

Tel: +44 (0)1223 371555
Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com



Trademarks
Parasolid is a trademark of Unigraphics Solutions Inc. 
HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.
IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.

OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual C/C++ and Window NT are registered trademarks of Microsoft Corp.
Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.

All other trademarks are the property of their respective owners.



ATable of Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 1 Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5
1.1 Introduction 5
1.2 Installation 6
1.3 PS/Workshop SDK directory structure 6
1.4 The PS/Workshop module wizard 7

 2 A Short Tutorial   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .9
2.1 Introduction 9
2.2 Creating a new project 9
2.3 Adding a Hollow menu item 10
2.4 Adding a handler for the OnCommand event 12
2.5 Writing code to perform the hollow 14

 3 Using COM in PS/Workshop  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
3.1 What is a COM object? 17
3.2 Creating a COM object 18

3.2.1 Creating a COM object indirectly 18
3.2.2 Creating a COM object directly 18

3.3 Using COM interfaces 19
3.3.1 Calling public methods 19
3.3.2 Testing for success or failure 20

3.4 Managing the lifetime of COM objects 20
3.4.1 Managing interfaces in method arguments 21
3.4.2 IUnknown 22
3.4.3 ATL smart interface pointers 23

3.5 Converting between data-types 23
3.5.1 Converting from BSTR to CString 24
3.5.2 Creating a BSTR 24

 4 Event Handling Within A Module .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
4.1 General message handling 25
4.2 Handling menu command events 27

 5 Module Structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
5.1 CAddinImpl 32
PS/Workshop V2.1 Developer Guide 3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Table of Contents
5.2 CXXXApp 32
5.2.1 CXXXApp Functions 32

5.3 CAddonMain 33
5.3.1 Summary 33
5.3.2 CAddonMain functions 34

5.4 CAddonDoc 37
5.4.1 Summary 37
5.4.2 CAddonDoc functions 39

5.5 CAddonView 44
5.5.1 Summary 44
5.5.2 CAddonView functions 44

 6 The PS/Workshop Interfaces .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47

 7 Adding a New Menu Item to PS/Workshop .  .  .  .  .  .  .  51

 8 Registering Handlers for Different Filetypes  .  .  .  .  .  53

 9 The Draw List  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55
9.1 Specifying which parts to render 55
9.2 Setting drawing options 56

 A Interface Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  57

 B Known Issues  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  129
4 PS/Workshop V2.1 Developer Guide



1
1Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Introduction
This manual provides a complete guide for developers who want to write their 
own modules for use with PS/Workshop. It contains the following chapters:
� Chapter 1 (this chapter) introduces you to the manual, tells you how to install 

the PS/Workshop SDK, and introduces you to the PS/Workshop AppWizard 
that is installed with the SDK.

� Chapter 2, “A Short Tutorial”, provides a step-by-step example that you can 
work through to gain a basic understanding of the processes involved in 
writing your own modules. It explains how to create a simple module using 
the PS/Workshop AppWizard.

� Chapter 3, “Using COM in PS/Workshop” provides a brief introduction to 
COM, and the way that it is used in PS/Workshop.

� Chapter 4, “Event Handling Within A Module” explains how events and 
messages are passed from PS/Workshop to a module, and how they should 
subsequently be handled by the module.

� Chapter 5, “Module Structure” describes the structure of the default classes 
and functions available in a module created using the PS/Workshop 
AppWizard.

� Chapter 6, “The PS/Workshop Interfaces” is an introduction to the COM 
interfaces in PS/Workshop that can be used by your module to access 
PS/Workshop functionality.

� Chapter 7, “Adding a New Menu Item to PS/Workshop” explains how you can 
add new menus and menu commands to the PS/Workshop menu bar, to give 
users access to the functionality in your module.

� Chapter 9, “The Draw List” explains how you can control which parts of a 
document are displayed, and what options are used to display them.

� Chapter 8, “Registering Handlers for Different Filetypes” describes how to 
modify PS/Workshop to load and save files in formats other than the default 
file formats supported by the core version of PS/Workshop itself.

� Appendix A, “Interface Functions” is a complete reference for the COM 
interfaces provided by PS/Workshop that you can use in a PS/Workshop 
module.

� Appendix B, “Known Issues” describes miscellaneous issues relevant to 
developing modules for use in PS/Workshop.

This manual assumes that you are familiar with the functionality in the core 
version of PS/Workshop, as well as the mechanism for loading and unloading 
PS/Workshop modules. For more details, see the PS/Workshop V2 User Guide.
PS/Workshop V2 User Guide 5



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Introduction
1.2 Installation
In order to develop PS/Workshop modules, you need to install the PS/Workshop 
SDK (Software Development Kit). This needs to be installed when you install 
PS/Workshop itself, by choosing the appropriate option in the installation wizard. 
The SDK is installed by default for the “Typical” configuration, so if you installed 
PS/Workshop with this configuration, you already have the SDK. 
If you do not have the SDK installed, run the installation again and ensure that 
the option is checked.

1.3 PS/Workshop SDK directory structure
The PS/Workshop SDK consists of the following files and folders:

Folder Files
<INSTALL_DIR> PSWorkshopAddonWizard.awx: The Visual 

Studio PS/Workshop project wizard. See 
Section 1.4 for more details.

PSWorkshop.tlb: Type library definitions for 
PS/Workshop.

<INSTALL_DIR>\Help The help files for PS/Workshop:

� PSWorkshopUserGuide.pdf The 
PS/Workshop User Guide in PDF format.

� PSWorkshopDevelopmentGuide.pdf 
This document in PDF format.

<INSTALL_DIR>\Modules Source code and object releases for the sample 
PS/Workshop modules

� Analyse.dll A module that performs a 
number of analytical operations on the 
parts in a document

� Edge.dll A module that demonstrates the 
edge blending functionality of Parasolid

<INSTALL_DIR>\Modules\Source Contains the source code for a number of 
example modules.

<INSTALL_DIR>\Modules\Source\
Edge Blend

The source code for the edge blending module.

<INSTALL_DIR>\Modules\Tutorial The full source code for the tutorial module 
described in Chapter 2, “A Short Tutorial”.
6 PS/Workshop V2 User Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The PS/Workshop module wizard
The example modules provided were written and compiled using Microsoft Visual 
Studio C++ 6.0 with Service Pack 4.0 installed.

1.4 The PS/Workshop module wizard
When you install the SDK, a module wizard is copied to the Visual Studio 
directory. This wizard produces a module that contains all the code for 
successfully initialising the module as well as adding a new menu and submenu 
to PS/Workshop. It also sets up and registers a stub function that is called from 
the menu. 

The module wizard is shown as “PSWorkshop AppWizard” in the Projects tab of 
the New dialog in Visual Studio. 
If you do not see this wizard, copy 
<INSTALL_DIR>\PSWorkshopAddonWizard.awx to 
\Common\MSDev98\Template under the Visual Studio directory.

Note: It is strongly advised that you use the PS/Workshop AppWizard to create 
your own modules. The wizard provides your module with basic functionality 
that will save you development time. In addition, some parts of this manual 
assume that your module has the same overall structure and functionality as 
that provided by the wizard.
PS/Workshop V2 User Guide 7



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Introduction
8 PS/Workshop V2 User Guide



2
2A Short Tutorial

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Introduction
This chapter contains a tutorial that guides you through the various stages 
required to implement a simple module in PS/Workshop. If you follow each step 
in the tutorial, you will create a module that hollows a given body in 
PS/Workshop.
In this tutorial you will learn how to:

� Create a new base project (Section 2.2)
� Add a new menu and menu item to PS/Workshop (Section 2.3)
� Add a handler for the new menu item (Section 2.4)
� Write code to hollow a body (Section 2.5)

Creating and displaying a dialog box is beyond the scope of this project. If you 
are interested in doing this, look at the example edge blending module provided. 
Alternatively, the MSDN documentation contains a number of tutorials that cover 
producing and displaying dialogs.

2.2 Creating a new project
Create a new template project using Visual Studio as follows:
� Choose File > New and click on the Projects tab
� Select the PS/Workshop AppWizard icon
� Type Tutorial in the Project name field
� Click OK
Compile the project and make sure that the module loads into PS/Workshop 
correctly:

� Start PS/Workshop and open a document 
� Check that a new Tutorial Debug menu, and an associated menu 

command, appear on the PS/Workshop menu. 

Note: If you have installed the PS/Workshop SDK, the source code for each 
step of this tutorial is installed in the folder 
<INSTALL_DIR>\Modules\Tutorial
PS/Workshop V2.1 Developer Guide 9



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A Short Tutorial
The Tutorial module is also listed in the Available Add-Ins list of the Add-Ins tab 
of the PS/Workshop Options dialog. You must close any open documents in 
PS/Workshop before opening the Options dialog in order to see this tab.

2.3 Adding a Hollow menu item
In this section you change the name of the default menu added by the template, 
and add a new Hollow command to it.
Using the ClassView in Visual Studio, locate the StartModule function within the 
CAddonMain class. This function is called after a module is successfully loaded 
and is responsible for initialising the module and adding any required menus or 
menu items to PS/Workshop.

Within StartModule a call is made to the PS/Workshop interface function 
AddMenuItem which adds a menu item to PS/Workshop. AddMenuItem contains 
the following arguments:

The CommandName argument controls which menu to add the item to; as well as 
what text should appear on any sub-item. In order to create a new Operations 
menu with a Hollow command you must modify the following line within 
StartModule: 

should become

Note: On compilation you may receive the warning “/DELAYLOAD:pskernel.dll 
ignored; no imports found from pskernel.dll”. This warning can be ignored as 
the module currently doesn't access any Parasolid functionality. See Chapter 
B, “Known Issues” for more information.

IPSWAddIn *pAddIn,  
BSTR CommandName,
long CommandID, 
PSW_Menu_Mode mode

CComBSTR bstrMenuItem
(OLESTR("&Tutorial Debug\nMy NewCommand") );

CComBSTR bstrMenuItem
(OLESTR("&Operations\n&Hollow") );
10 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Adding a Hollow menu item
The CommandID argument specifies the ID that is passed back to the module if 
the menu item has been chosen. This ID should be unique within a module. You 
need to add a new ID to associate with the new Hollow command. 

In Visual Studio, define an ID called ID_ON_HOLLOW as follows:
� Choose View > Resource Symbols
� Click New in the Resource Symbols dialog
� Type ID_ON_HOLLOW in the Name field of the New Symbol dialog

The mode argument controls the type of menu to add to PS/Workshop. This can 
have one of the following values:

For the purposes of this example, leave the default value of mode: 
PSW_Menu_doc.

Change the call to AddMenuItem from:

to:

Finally, compile and run the code, and open a document in PS/Workshop. You 
should see a new Operations menu on the PS/Workshop menu that contains a 
Hollow command. If you choose Operations > Hollow, nothing happens yet, 
since you have not defined a function to handle this event.

Note: It is a good idea to use a CComBSTR smart pointer to encapsulate any 
BSTR, as this automatically frees the resources of the BSTR when it goes out 
of scope. For further details see Section 3.5.2, “Creating a BSTR”.

Value Description
PSW_Menu_App Display the menu item at the application level (i.e. when 

there are no documents open in PS/Workshop)
PSW_Menu_Doc Display the menu item at the document level (i.e. only 

when there are one or more documents open in 
PS/Workshop)

return m_pAppInterface->AddMenuItem( pApp, bstrMenuItem, 
ID_ON_MY_COMMAND, PSW_Menu_Doc);

return m_pAppInterface->AddMenuItem( pApp, bstrMenuItem, 
ID_ON_HOLLOW, PSW_Menu_Doc);
PS/Workshop V2.1 Developer Guide 11



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A Short Tutorial
The full source code for CAddonMain::StartModule should be as follows:

For more information about adding menu items to PS/Workshop, see Chapter 7, 
“Adding a New Menu Item to PS/Workshop”.

2.4 Adding a handler for the OnCommand 
event
So far you have created an Operations menu containing a Hollow command. If 
you choose Operations > Hollow, this calls the IPSWEvents::OnCommand 
function on the module with the ID which you passed to the 
IPSWApp::AddMenuItem function (ID_ON_HOLLOW).
By default, a PS/Workshop module routes this message from the CAddinImpl 
class to the CAddonMain::OnCmdMsg function, which can either handle the 
event itself or call CAddonDoc::OnCmdMsg. This function in turn can either 
handle the event or pass it to CAddonView::OnCmdMsg to handle. The class you 
choose to handle the event depends on the functionality you want for the 
command.

In this case, to make the Hollow command functional, you must add a handler at 
the document level – i.e. the CAddonDoc class – since the command performs a 
hollow operation that acts on the parts in a document. 

For a complete description of event handling, see Chapter 4, “Event Handling 
Within A Module”. You may find it useful to set a number of break points in the 
code and debug the module to better understand the event handling process. 
Add the following private function to the CAddonDoc class using the Visual 
Studio ClassWizard (View > ClassWizard).

HRESULT CAddonMain::StartModule( IPSWAddIn* pApp )
{
ATLASSERT( pApp );
HRESULT hr = E_FAIL;
CComBSTR bstrMenuItem(OLESTR("&Operations\n&Hollow") );
return m_pAppInterface->AddMenuItem( pApp, bstrMenuItem, 
ID_ON_HOLLOW, PSW_Menu_Doc);
}

12 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Adding a handler for the OnCommand event
For the time being, CAddonDoc::OnHollow simply displays a message when it is 
called. Section 2.5 describes how to add code that performs the hollow operation 
itself.
The ID of the new command is passed to CAddonDoc::OnCmdMsg as an 
argument. The OnCmdMsg function uses a switch statement to check whether it 
should handle the command and which function to route it to. In order to correctly 
handle the hollow command you need to modify this switch statement such that 
when it receives the ID_ON_HOLLOW ID it will call the CAddonDoc::OnHollow 
handler function. 

To do this, add the following case into the switch statement:

Compile and run the code again, and open a document in PS/Workshop . 
Choose Operations > Hollow to display the message box and confirm that 
CAddonDoc::OnHollow has been successfully called.

HRESULT CAddonDoc::OnHollow()
{

AfxMessageBox("CAddonDoc::OnHollow reached");
return S_OK;

}

switch( nID )
{
case ID_ON_MY_COMMAND:

OnMyFunction();
hr = S_OK;
break;

case ID_ON_HOLLOW: // Our newly added case statement
OnHollow();
hr = S_OK;
break;

default:
break;

}

PS/Workshop V2.1 Developer Guide 13



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A Short Tutorial
2.5 Writing code to perform the hollow
You now have the framework of the hollow operation in place, and you can add 
code to perform the hollow itself. To do this you need to complete the following 
steps:

� Obtain any selected faces from the body (these are used as pierce faces for 
the hollow)

� Create a partition mark that you can rollback to if the hollow fails 
� Call PK_BODY_hollow_2, using the selected faces as pierce faces
� Check for any errors and roll back to before the hollow if necessary 
� Force an update of PS/Workshop if necessary 

To perform the hollow operation, add the following code in place of the body of 
the CAddonDoc::OnHollow function.
// set our return argument
HRESULT hr = E_FAIL;
// Changes the cursor to an hourglass for the duration of the
// function to show the user that something is happening
CWaitCursor cursor;
// The member variables m_nParts and m_pkParts contain copies of
// the parts in the associated PS/Workshop document. These
// variables are automatically initialised and should be kept up
// to date with any changes in the number of parts in the
// document
// In this case if we have no parts in the document then there 
// is no point continuing
if ( m_nParts == 0 )
{

AfxMessageBox("CAddonDoc::OnHollow->No parts to hollow!");
return S_OK;

}
// Clear the last error. This is for our rather simplistic error
// handling routine which is used later on
PK_LOGICAL_t  pk_was_error = PK_LOGICAL_true;
PK_ERROR_sf_t pk_error_sf;
PK_ERROR_clear_last( &pk_was_error );
// Obtain any selected faces in the document - these will be
// pierced during the hollow operation. 
int nFaces = 0;
PK_FACE_t* faces = NULL;
// Get the number of selected faces
hr = m_pSelectionList->get_Count( PK_CLASS_face, &nFaces );
if ( FAILED( hr ) )
return hr;
// now get the actual selected faces
if ( nFaces )
{

// allocate our array to store the selected faces in 
14 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Writing code to perform the hollow
faces = new PK_FACE_t[ nFaces ];
if ( faces == NULL ) // check if the allocation succeeded

return E_OUTOFMEMORY;
// there are two methods to obtain the faces required:
// Call the IPSWSelectionList->get_Item function for each face 
// this has a performance disadvantage in that it makes n 
// separate calls to PS/Workshop to get all the faces
for ( int i = 0; i < nFaces; i++ )
{
 hr = 

            m_pSelectionList->get_Item( PK_CLASS_face, i, &faces[ 
i ] );

if ( FAILED( hr ) )
{

// delete our array
delete [] faces;
return hr;

}
}
// Alternatively, get all the faces in one call to PS/Workshop.
// For this we need to obtain the enumerator for the list
// (IPSWEnumSelectionList).
/*

CComPtr<IPSWEnumSelectionList> pEnumSel = NULL;
hr = m_pSelectionList->get__NewEnum( PK_CLASS_face, 
(IUnknown**)&pEnumSel );

if ( FAILED( hr ) )
{

// free our array and return
delete [] faces;
return hr;

}
// we can now get all the faces at one time
hr = pEnumSel->Next( nFaces, faces, NULL );
if ( FAILED( hr ) )
{

delete [] faces;
return hr; 

}
*/

}
// create a mark to rollback to in case the hollow fails
PK_PMARK_t pmark = PK_ENTITY_null;
m_pRollback->MakePMark( &pmark );
// set the options for the hollow (here we are simply using the
// defaults).
PK_BODY_hollow_o_t hollowOptions;
PK_BODY_hollow_o_m( hollowOptions );
// fill in any faces to be pierced
if ( nFaces > 0 )
{

hollowOptions.n_pierce_faces = nFaces;
hollowOptions.pierce_faces = faces;

}
// and the return arguments
PK_TOPOL_track_r_t tracking;
PS/Workshop V2.1 Developer Guide 15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A Short Tutorial
PK_TOPOL_local_r_t results;
// finally call the function - here we are assuming that we only 
// have one body in the document
PK_BODY_hollow_2( m_pkParts[0], 0.001, 1.0e-6, &hollowOptions, 
&tracking, &results );
// Now we check to see if the previous function succeeded or not
PK_ERROR_ask_last( &pk_was_error, &pk_error_sf );
if( PK_LOGICAL_true == pk_was_error )
{

CString pk_err_str = pk_error_sf.function;
pk_err_str = pk_err_str + "\n returns \n";
pk_err_str = pk_err_str + pk_error_sf.code_token;
AfxMessageBox( pk_err_str, MB_OK | MB_ICONSTOP );
if ( pk_error_sf.severity != PK_ERROR_mild ) 
{

// Then the model may be corrupted and we need to rollback
m_pRollback->RollbackTo( &pmark, 1 );
hr = E_FAIL;

}
}

// We also need to check the result structure to see if the 
// function succeeded

else if ( results.status != PK_local_status_ok_c ) 
{

// Then again we need to rollback because it has failed 
AfxMessageBox("Hollow Failed");
m_pRollback->RollbackTo( &pmark, 1 );
hr = E_FAIL;

}
else
{

// The hollow succeeded so force an update of PS/Workshop
m_pDocInterface->Update( TRUE );
// Delete the created pmark
m_pRollback->DeletePMark( pmark );
hr = S_OK;

}
// Now we can free up some memory

// our faces array
if ( nFaces > 0 )

{
nFaces = 0;
delete [] faces;
faces = NULL;

}
// Our return arguments from the hollow
PK_TOPOL_track_r_f( &tracking );
PK_TOPOL_local_r_f( &results );

// And finally return the result of the hollow operation
return hr;
16 PS/Workshop V2.1 Developer Guide



3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3Using COM in
PS/Workshop
3.1 What is a COM object?
COM (Component Object Model) is a binary method for defining objects whose 
functionality can be used by an application regardless of the source code 
language in which either the object or the application are written. It allows code 
to be shared at a binary level rather than a source code level. A COM object is a 
binary object (usually implemented as a DLL) that exposes a set of methods that 
an application such as a PS/Workshop module can call. 
Applications interact with COM objects in a similar way to C++ objects, although 
there are some clear differences:

� COM objects enforce strict encapsulation. The public methods in a COM 
object are grouped into one or more interfaces. To use a method, you must 
first create the COM object and then obtain the interface that contains the 
method from that object.

� COM objects must be created using COM-specific techniques, as described 
in Section 3.2, “Creating a COM object”.

� The lifetime of COM objects must be controlled using COM-specific 
techniques, as described in Section 3.4, “Managing the lifetime of COM 
objects”.

� Each COM object has a unique registered identifier that is used to create the 
object. COM automatically loads the correct DLL. You do not need to 
explicitly load the DLL or link to a static library in order to use a COM object.

PS/Workshop exposes a number of interfaces to provide access to its core 
functionality. The use of COM means that you do not have to develop your 
module code in the same language that PS/Workshop was itself developed in, 
though examples throughout this manual are given in C++.
A complete reference to the interfaces provided by PS/Workshop can be found 
in Appendix A, “Interface Functions”.

Further details about some of the concepts and use of COM can be found from 
the following sources:

� Inside COM by Dale Rogerson (Microsoft Press; 1997; ISBN: 1572313498)
� Inside Distributed COM by H. Eddon and G. Eddon (Microsoft Press; 1998; 

ISBN: 157231849X)
PS/Workshop V2.1 Developer Guide 17



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using COM in PS/Workshop
3.2 Creating a COM object
In C++, objects can either be 

� created on the heap using the new operator, in which case their lifetime is 
controlled when the requisite delete operator is called, or

� defined on the stack, in which case their lifetime is controlled by the scope of 
the object. 

By contrast, COM objects are created either 

� indirectly, using a creation method exposed by a particular interface, or
� directly, using the function CoCreateInstance.
The first of these is the simplest approach, and is the one that you should use for 
the vast majority of interfaces exposed for PS/Workshop. The exception to this is 
the IPSWDrawOpts interface, which can be created directly in order to specify a 
set of drawing options to pass to the IPSWDrawList interface.

3.2.1 Creating a COM object indirectly
Creating a COM object using a public object creation method is straightforward. 
You pass the method the address of an interface pointer, and the method then 
creates the object and returns an interface pointer. When you use this approach, 
the type of interface that is returned is defined by the method, though you can 
often specify a number of things about how the object should be created.

The following example shows how to create a COM object indirectly:

The pointer to the new interface is contained in pDoc. You can use that pointer to 
access any of the interface’s methods, as described in Section 3.3.1. The result 
of the call to the method is contained in hr, which can be tested for success or 
failure, as described in Section 3.3.2.

3.2.2 Creating a COM object directly
To create a COM object directly, you must do the following:

� Initialize COM using the function CoInitialize
� Create the object using the function CoCreateInstance
� Uninitialize COM using the function CoUninitialize

IPSWApp* pApp; // address of interface pointer
IPSWDoc* pDoc = NULL; // returned interface pointer
HRESULT hr = pApp->OpenNewDocument(&pDoc); 

// call to object creation method
18 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using COM interfaces
If you create a new module using the PS/Workshop AppWizard, then initializing 
and uninitializing COM is handled by the supplied framework.

In addition, you need to know the Class ID (CLSID) of the object you want to 
create. If this CLSID is not publicly available, you cannot create the object 
directly.
The following example shows how you can create an IPSWDrawOpts object, 
using ATL smart interface pointers, as described in Section 3.4.3.:

This creates a single uninitialized object of the class associated with the specified 
CLSID.

3.3 Using COM interfaces
To simplify the use of COM interfaces in PS/Workshop, as much of the COM 
complexity as possible is hidden behind the scenes. If you use the PS/Workshop 
AppWizard to create a new module, supporting code that you do not need to use 
explicitly is placed in areas of the source code that you do not need to alter. If you 
do not use the PS/Workshop AppWizard, then you can find the definitions of the 
PS/Workshop interfaces using the type library supplied in the PS/Workshop 
installation directory.

3.3.1 Calling public methods
Unlike C++, you do not access a COM object's methods directly. Instead, you 
must obtain a pointer to the interface that exposes the method. To call the 
method, you use essentially the same syntax that you would to invoke a pointer 
to a C++ method. For example, to invoke the IPSWDrawOpts::Reset method, 
you would use the following syntax.

CComPtr<IPSWDrawOpts> pDrawOpts = NULL;
if ( FAILED( pDrawOpts.CoCreateInstance( CLSID_PSWDrawOpts ) ) 
)
{

// recovery code
}

IPSWDrawOpts *pDrawOpts;
...
pDrawOpts->Reset(...);
PS/Workshop V2.1 Developer Guide 19



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using COM in PS/Workshop
3.3.2 Testing for success or failure
All public methods exposed by an interface return a 32-bit integer called an 
HRESULT. For the interfaces exposed by PS/Workshop, this is used to indicate 
the return status of the method. Success codes are given names with an S_ 
prefix (such as S_OK), and failure codes are given names with an E_ prefix (such 
as E_FAIL). Specific error codes are documented with the reference 
documentation for each method. General error codes are taken from the 
standard set defined in Winerror.h.

The fact that methods may return a variety of success or failure codes means 
that you need to be careful when testing whether a call to a given method has 
been successful or not. If you need detailed information about the outcome of a 
call to a method, you need to test against individual return values. However, if 
you want to implement a robust method for detecting the general success or 
failure of a method call, you should use the following two macros, which are 
defined in Winerror.h:

� The SUCCEEDED macro returns TRUE if the method call was successful, 
and FALSE otherwise.

� The FAILED macro returns TRUE if the method call failed, and TRUE 
otherwise.

These macros give you a simple way of testing for general success or failure, as 
shown in the following example:

3.4 Managing the lifetime of COM objects
When an object is created, the system allocates the necessary memory 
resources. When that object is no longer needed, you should ensure that the 
resources it has used are freed up once again. To ensure this happens, each 
object is responsible for deleting itself. However, COM does not let you destroy 
objects directly, because a given COM object may be used by several 
applications; if one application destroyed an object, any other applications using 
that object would fail. Instead, the lifetime of a COM object is managed using a 
reference count system. 

if(FAILED(hr))
{
//Code to handle failure
}

else
{
//Code to handle success
}

20 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Managing the lifetime of COM objects
An object’s reference count is the number of times one of its interfaces has been 
requested by an application. Each time an interface is requested, the reference 
count is incremented by 1. When an application has finished with an interface, it 
releases it, decrementing the reference count by 1. Once an object’s reference 
count has reached zero, it is removed from memory.

Management of an object’s lifetime is done primarily through an interface called 
IUnknown, or through the object creation methods exposed by other interfaces. 
All COM interfaces must inherit the IUnknown interface in order to manage the 
lifetime of objects they are exposed in.
Incrementing an object’s reference count is done in one of the following ways:

� Calling a public object creation method increments that object’s reference 
counter automatically.

� Calling IUnknown::QueryInterface to return an interface increments the 
object’s reference counter if the call was successful.

� Calling IUnknown::AddRef increments the object’s reference counter. You 
should call this explicitly whenever you obtain a new interface pointer

Decrementing an object’s reference count is done by calling IUnknown::Release. 
You must release all interface pointers, regardless of how the object reference 
counter was incremented. Using ATL smart interface pointers, as described in 
Section 3.4.3, can help to make this task simpler.

3.4.1 Managing interfaces in method arguments
If one of the received arguments for a method is an interface then you do not 
need to call either AddRef or Release on the interface pointer. The only exception 
to this is if your module wishes to keep a copy of the interface – in this case you 
should call AddRef on the interface pointer, and you must also release the 
interface later.

If an interface is a return argument for a function, it is the module's responsibility 
to ensure that the interface is released at some later date. Using ATL smart 
interface pointers, as described in Section 3.4.3, can help to make this task 
simpler.

Performance issue: Failing to release an interface is one of the most common 
ways of creating memory leaks in an application that uses COM interfaces. You 
must ensure that reference counting is handled properly in your PS/Workshop 
modules, since PS/Workshop will not exit correctly if the reference count for 
any of its interfaces is not zero.
PS/Workshop V2.1 Developer Guide 21



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using COM in PS/Workshop
3.4.2 IUnknown
Every COM object must inherit a standard interface called IUnknown, which 
contains a number of methods that implement the reference count system. 
IUnknown exposes the following methods:

QueryInterface

Determines whether an object supports a particular interface. If it does, 
QueryInterface returns the interface and increments the object’s reference count.

Use this method to request additional interfaces to the one returned by an 
object’s creation method.

AddRef

Increments the object’s reference count. 
This method should be called whenever a new interface pointer is obtained. 
However, you should rarely need to use this method, since the object’s reference 
count is automatically incremented whenever an interface is obtained by calling 
an object creation method, or when QueryInterface is called.

Release

HRESULT QueryInterface(
REFIID riid, // . 
LPVOID* ppvObj // 

);

Received arguments
riid Reference ID of the interface requested
Returned arguments
ppvObj Address of interface pointer if successful

Specific Errors
E_NOINTERFACE No such interface supported.
E_POINTER Invalid pointer.

ULONG AddRef(); 

ULONG Release();
22 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Converting between data-types
Releases an interface pointer, and decrements the object’s reference count. 

As soon as the reference count reaches 0 the object destroys itself.

3.4.3 ATL smart interface pointers
ATL smart interface pointers are used to encapsulate PS/Workshop interfaces in 
COM objects. Using smart interface pointers simplifies both using and managing 
COM interfaces; the encapsulated interface is correctly released once the smart 
pointer goes out of scope, so you do not need to worry about releasing it 
explicitly.
The following example illustrates the difference between using smart pointers to 
encapsulate COM interfaces, and using standard pointers:

With smart
pointers

Without smart
pointers

3.5 Converting between data-types
This section contains a number of approaches to converting between different 
datatypes that you might find useful when developing modules.

IPSWDrawList *pDrawList // Previously initialised pointer
// create our smart interface pointer to hold our interface
CComPtr<IPSWDrawOpts> pDrawOpts;
HRESULT hr = pDrawList->get_DrawOptions(&pDrawOpts);
if ( SUCCEEDED( hr ) )
{

// Go off and do something
)

IPSWDrawList *pDrawList // Previously initialised pointer
// create a pointer to hold our interface
IPSWDrawOpts *pDrawOpts;
HRESULT hr = pDrawList->get_DrawOptions(&pDrawOpts);
if ( SUCCEEDED( hr ) )
{

// Go off and do something
// remember to release the interface when finished with it
pDrawOpts->Release();

)

PS/Workshop V2.1 Developer Guide 23



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using COM in PS/Workshop
3.5.1 Converting from BSTR to CString
To convert from a BSTR to a CString:

3.5.2 Creating a BSTR
To create a BSTR, use one of the following methods:

Method 1:

Method 2:

Method 3:

The CComBSTR is a special ATL (Active Template Library) object that 
encapsulates a BSTR. Using this construct simplifies the process of handling a 
BSTR. In particular, it means that the resources of the encapsulated BSTR are 
correctly freed once the object has gone out of scope. 

BSTR bsDocTitle; // Previously initialised BSTR
CString csTitle = bsDocTitle;

CComBSTR bsStr; // Unitialised BSTR
CString csString = _T("Test String");
BsStr = csString;

CComBSTR bstrMenuItem( OLESTR("Test String") );

CString csString = _T("Test String");
CComBSTR bsStr  = csString.AllocSysString();
24 PS/Workshop V2.1 Developer Guide



4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4Event Handling Within A
Module
4.1 General message handling
In order to be recognized as a PS/Workshop module and loaded by 
PS/Workshop, all modules must support the IPSWAddIn interface.
In addition, in order to provide event handling capability, all modules must 
support IPSWEvents interface, so that the module can receive messages from 
PS/Workshop. See Appendix A, “Interface Functions” for a complete reference of 
all PS/Workshop interfaces.

If your module does not support the IPSWEvents interface, it can only access 
CAddonMain level functionality. In particular, it cannot access any documents 
which are opened in PS/Workshop.

The base class CAddinImpl that is created by the PS/Workshop AppWizard sets 
up the necessary support for both these interfaces automatically, and 
encapsulates a CAddonMain object.
Modules created using the PS/Workshop AppWizard route any messages from 
the CAddinImpl class to the CAddonMain class. Events can then either be 
handled by the relevant function inside this class, or passed on to CAddonDoc. 
In turn, events can either be handled inside CAddonDoc or passed to 
CAddonView to handle. This mechanism is illustrated in Figure 4–1.
PS/Workshop V2.1 Developer Guide 25



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Event Handling Within A Module
Figure 4–1 The message handling mechanism within a PS/Workshop module

The class you decide to use to handle a given event depends on the functionality 
you want for the operation concerned, as shown in the table below:

The following message handlers are available for each of the classes above. Full 
information about each message handler is given in Chapter 5, “Module 
Structure”.

Class handling operation Functionality available
CAddonMain Functionality for the operation is available at the 

application level, i.e. when there are no 
documents open.

CAddonDoc Functionality for the operation is available at the 
document level, i.e. for the current document.

CAddonView Functionality for the operation is available at the 
view level, i.e. for the current view of the current 
document.

Class Available message handlers
CAddonMain OnCmdMsg OnDocOpen OnDocClose 

OnViewOpen OnViewClose OnAppDestroy 
OnSelectTopols OnPartChange

Relevant function in CAddonMain

Event

Handle the event

Handle the event

Route to the correct 
CAddonDoc class

Route to the correct 
CAddonView class

Relevant function in CAddonDoc

Relevant function in CAddonView
26 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Handling menu command events
Modules created using the PS/Workshop AppWizard use several of the available 
message handlers to ensure that the list of CAddonDoc and CAddonView 
classes are correctly created and destoyed. 

4.2 Handling menu command events
The OnCmdMsg functions available in CAddonMain, CAddonDoc, and 
CAddonView can be called from PS/Workshop when the user chooses a menu 
command that has been added by a module. 

As with other events, modules route menu command events from the 
CAddinImpl class to the relevant function in CAddonMain: in this case, 
CAddonMain::OnCmdMsg. This function can then either handle the event or call 
the corresponding CAddonDoc::OnCmdMsg function. In turn, this function can 
either handle the event or pass it to the CAddonView::OnCmdMsg to handle. 
The ID associated with any particular menu command must be unique within the 
module, otherwise the function called may not be the correct one. Section 2.3, 
“Adding a Hollow menu item”, provides an example of how you can do this.

Figure 4–2 displays the command handling mechanism in more detail. 

CAddonDoc OnCmdMsg OnDocClose OnViewOpen 
OnViewClose OnSelectTopols OnPartChange

CAddonView OnCmdMsg

Class Available message handlers
PS/Workshop V2.1 Developer Guide 27



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Event Handling Within A Module
Figure 4–2 The command handling mechanism within a PS/Workshop module
OnCmdMsg can also be called if a user registered File type is opened or saved 
(as specified using the IPSWApp::RegisterFileXXXFunctions) in which case the 
second parameter contains the name of the file to open/save.

When you handle an event using the OnCmdMsg function for a given class, you 
should set the value of the hr variable to S_OK to ensure that no classes further 
down the event chain are called. An example of how this might be done is shown 
below:

CAddonMain::OnCmdMsg

CAddonDoc::OnCmdMsg

CAddonView::OnCmdMsg

User chooses menu 
item added by module

Associate ID with 
menu item 

Handle the event

Handle the event

Route to the correct 
CAddonDoc class

Route to the correct 
CAddonView class
28 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Handling menu command events
HRESULT CAddonDoc::OnCmdMsg(UINT nID, void* lpparm )
{

HRESULT hr = S_FALSE;
// either handle the event here...
switch( nID )
{
case ID_ON_MY_COMMAND:

OnMyFunction();
hr = S_OK; // We need to set this variable here

// otherwise the event will 
break; // be passed onto the view (which means we

// could have the 
default: //event responded to twice

break;  
}
// check to see if we have already handled this event
if ( hr == S_FALSE )
{

// try routing this to the active view
CAddonView* pView = GetActiveView();
HRESULT hr = S_FALSE;
if ( pView )

hr = pView->OnCmdMsg( nID, lpparm );
}
return hr;

}

PS/Workshop V2.1 Developer Guide 29



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Event Handling Within A Module
30 PS/Workshop V2.1 Developer Guide



5
5Module Structure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This chapter describes the module structure that is created for you automatically 
when you use the PS/Workshop AppWizard as a basis for a new module. The 
relationships between the classes produced are detailed in Figure 5–1. A more 
in-depth description of each class is given in the rest of this chapter. See 
Appendix A, “Interface Functions” for a description of the interfaces that each 
class supports.

Figure 5–1 Overview of the structure of a module created using the AppWizard

CAddonView
m_pDoc
m_pViewInterface

OnCmdMsg()
GetViewInterface()

CAd dInImpl

m_pMain

CAddonDoc
m_addonMain
m_InterfaceVsViewMap
m_nParts
m_pDocInterface
m_pDraw List
m_pkParts
m_pPartList
m_pRollback
m_pSelectionList

GetAct iveView()
GetDocumentInterface()
GetDrawInt erface()
GetPartInterface()
GetParts()
GetRollbackInt erface()
GetSelec tionInt erface ()
OnCmdMsg()
OnDocClose()
OnMyFunction()
OnPartChange()
OnSelectTopols()
OnVie wClose()
OnVie wOpen()

CAddonMain
m_pAppInterface
m_pInterfaceVsDocMap

GetActiveDocument()
OnAppDestroy()
OnCmdMsg()
OnDocClose()
OnDocOpen()
OnPartChange()
OnSelectTopols()
OnViewClose()
OnViewOpen()
StartModule()
NewMethod()

CXXXApp

ExitInstance()
InitInstance()

IPSWAddIn interface

IPSWEvents interface

IPSWApp interface

IPSWParts interface

IPSWRollback interface

IPSWDoc interface

IPSWSelectionList interface

IPSWView interface
PS/Workshop V2.1 Developer Guide 31



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
5.1 CAddinImpl
The CAddinImpl class receives all events and messages from PS/Workshop and 
passes them to the encapsulated CAddonMain class.

It is also responsible for instantiating the class itself (IPSWAddIn::OnConnection) 
and deleting the class (IPSWAddIn::OnDisconnection). 

This class supports both the IPSWAddIn and IPSWEvents interfaces. During the 
initial IPSWAddIn::OnConnection event, CAddinImpl creates an instance of the 
CAddonMain class. Subsequent messages from PS/Workshop are passed to 
this encapsulated CAddonMain object.

CAddinImpl has a single data member:

5.2 CXXXApp
The CXXXApp class is an MFC-generated module application object, and is 
provided as part of the MFC framework of the module. You should place any 
initialisation code for a module in either the CAddinImpl or CAddonMain classes, 
rather than this class.

5.2.1 CXXXApp Functions
CXXXApp contains the following functions.

InitInstance 

Performs initialisation of the module.

ExitInstance 

Performs clean-up of the application.

Data member Description
CAddonMain *m_pMain An instance of the CAddonMain class

BOOL InitInstance()

int ExitInstance()
32 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonMain
5.3 CAddonMain
The CAddonMain class receives all events and messages from the CAddinImpl 
class. These can either be handled by the appropriate message handler in 
CAddonMain, or passed on to CAddonDoc for handling.

5.3.1 Summary
The following is a summary of the CAddonMain class.

Data members Description
CComQIPtr<IPSWApp> 
m_pAppInterface

A pointer to the PS/Workshop IPSWApp 
interface

CMap<IPSWDoc*, IPSWDoc*, 
CAddonDoc*, CAddonDoc* > 
m_InterfaceVsDocMap

Maintains a mapping between the list of 
the IPSWDoc interface pointer and the 
associated CAddonDoc class

Constructors Description
CAddonMain Constructs the CAddonMain object

Message handlers Description
OnDocClose Handles the IPSWEvents::OnDocClose message
OnDocOpen Handles the IPSWEvents::OnDocOpen message
OnPartChange Handles the IPSWEvents::OnPartChange message
OnSelectTopols Handles the IPSWEvents::OnSelectTopols message
OnViewClose Handles the IPSWEvents::OnViewClose message
OnViewOpen Handles the IPSWEvents::OnViewOpen message
OnCmdMsg Handles the IPSWEvents::OnCommand message

Module methods Type Description
GetActiveDocument CAddonDoc* Returns the currently active 

CAddonDoc class

Initialiser/Destructors Description
StartModule Handles the IPSWAddIn::OnConnection event
OnAppDestroy Handles the IPSWAddIn::OnDisconnection event
PS/Workshop V2.1 Developer Guide 33



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
5.3.2 CAddonMain functions
CAddonMain contains the following functions.

CAddonMain
Constructor 

Constructs a CAddonMain object. 

OnDocClose
Message handler 

Handles the IPSWEvents::OnDocClose event.

This function traverses the interface/document map (m_pInterfaceVsDocMap) 
and passes the event to the correct document to handle.

OnDocOpen
Message handler 

Handles the IPSWEvents::OnDocOpen event.

CAddonMain
(
--- received arguments ---

IDispatch *pIPSWApp 
)

Received arguments
pIPSWApp Pointer to the PS/Workshop dispatch interface

HRESULT OnDocClose
(
--- received arguments ---

IPSWDoc *pDoc
)

Received arguments
pDoc The IPSWDoc interface associated with this document

HRESULT OnDocOpen
(
--- received arguments ---

IPSWDoc *pDoc
)

34 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonMain
This function creates a new CAddonDoc object and adds this to the 
interface/document map (m_pInterfaceVsDocMap).

OnPartChange
Message handler 

Handles the IPSWEvents::OnPartChange event.
This function passes the event to each of the documents.

OnSelectTopols
Message handler 

Handles the IPSWEvents::OnSelectTopols event.

This function passes the event to each of the documents.

OnViewClose
Message handler 

Handles the IPSWEvents::OnViewClose event.

This function traverses the interface/document map (m_pInterfaceVsDocMap) 
for the associated document and passes the event to it.

Received arguments
pDoc The IPSWDoc interface associated with this document

HRESULT OnPartChange()

HRESULT OnSelectTopols()

HRESULT OnViewClose
(
--- received arguments ---

IPSWDoc *pDoc, 
IPSWView *pView

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view
PS/Workshop V2.1 Developer Guide 35



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
OnViewOpen
Message handler 

Handles the IPSWEvents::OnViewOpen event.

This function traverses the interface/document map (m_pInterfaceVsDocMap) 
and passes the event to the correct CAddonDoc.

OnCmdMsg
Message handler 

Handles the IPSWEvents::OnCommand event.

The OnCmdMsg function looks for the function associated with the ID in the 
CAddonMain class. If it fails to find one, the event is passed to the CAddonDoc 
class to handle.

GetActiveDocument
Module method 

This function returns the currently active CAddonDoc class. If there is no 
currently active document it returns NULL.

HRESULT OnViewOpen
(
--- received arguments ---

IPSWDoc *pDoc,
IPSWView *pView

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view

HRESULT OnCmdMsg
(
--- received arguments ---

UINT nID,
void *lpparam = NULL

)

Received arguments
nID The ID associated with this command
lpparam Extra data related to the command

CAddonDoc* GetActiveDocument()
36 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonDoc
StartModule
Initializer 

This function handles initialisation of the PS/Workshop module. It is called as a 
result of IPSWAddIn::OnConnection.

You should add any one-time initialisation code for your module here. This 
includes code for adding menu items, as well as registering any callback 
functions.
If this function returns a failure code then the CAddinImpl::OnConnection deletes 
the CAddonMain class and itself returns a failure which forces PS/Workshop to 
unload the module.

OnAppDestroy
Destructor 

This function handles destruction of the module. It is called as a result of 
IPSWAddIn::OnDisconnection.

OnAppDestroy traverses the interface/document map (m_pInterfaceVsDocMap) 
deleting each document.

5.4 CAddonDoc
The CAddonDoc class represents a module document that shadows the current 
PS/Workshop document.

5.4.1 Summary
The following is a summary of the CAddonDoc class.

HRESULT StartModule
(
--- received arguments ---

IPSWAddIn *pApp 
)

Received arguments
pApp The IPSWAddIn interface of the module

HRESULT OnAppDestroy()
PS/Workshop V2.1 Developer Guide 37



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
Data members Description
CAddonMain *m_addonMain The parent CAddonMain class
int m_nParts The number of parts in the document
PK_PART_t *m_pkParts A copy of the parts in the document
CComPtr<IPSWDoc> 
m_pDocInterface

The associated IPSWDoc smart interface 
pointer

CComPtr<IPSWParts> 
m_pPartList

The associated IPSWParts smart interface 
pointer

CComPtr<IPSWSelectionList> 
m_pSelectionList

The associated IPSWSelectionList smart 
interface pointer

CComPtr<IPSWDrawList> 
m_pDrawList

The associated IPSWDrawList smart 
interface pointer

CcomPtr<IPSWRollback> 
m_pRollback

The associated IPSWRollback smart 
interface pointer

CMap< IPSWView*, 
IPSWView*, CAddonView*, 
CAddonView* > 
m_InterfaceVsViewMap

Maintains a list of the IPSWView interfaces 
and the associated CAddonView class

Constructors Description
CAddonDoc Constructs the CAddonDoc object

Message handlers Description
OnDocClose Handles the CAddonMain::OnDocClose message
OnPartChange Handles the CAddonMain::OnPartChange message
OnSelectTopols Handles the CAddonMain::OnSelectTopols message
OnViewClose Handles the CAddonMain::OnViewClose message
OnViewOpen Handles the CAddonMain::OnViewOpen message
OnCmdMsg Handles the CAddonMain::OnCmdMsg message

Interface access functions Description
CComPtr<IPSWDoc>& 
GetDocumentInterface

Returns the IPSWDoc interface

CComPtr<IPSWSelectionList>& 
GetSelectionInterface

Returns the IPSWSelectionList interface

CComPtr<IPSWDrawList>& 
GetDrawInterface

Returns the IPSWDrawList interface
38 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonDoc
5.4.2 CAddonDoc functions
CAddonDoc contains the following functions.

CAddonDoc
Constructor 

This function constructs a CAddonDoc object and sets the values of the following 
interfaces:
� IPSWSelectionList
� IPSWDrawList
� IPSWRollback
� IPSWParts 

The CAddonDoc constructor also queries and sets the correct values for 
m_nParts and m_pkParts.

CComPtr<IPSWParts>& 
GetPartInterface

Returns the IPSWParts interface

CComPtr<IPSWRollback>& 
GetRollbackInterface

Returns the IPSWRollback interface

Module methods Type Description
GetActiveView CAddonView* Returns the currently active view 
GetParts HRESULT Returns the number of parts in the document

Custom functions Description
OnMyFunction Demonstration User extensible function.

Interface access functions Description

CAddonDoc
(
--- received arguments ---

IPSWDoc *pDoc, 
CAddonMain *pMain

)

Received arguments
pDoc The associated IPSWDoc interface
pMain The parent CAddonMain
PS/Workshop V2.1 Developer Guide 39



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
OnDocClose
Message handler 

This function handles any CAddonMain::OnDocClose events passed to it from 
CAddonMain.

It traverses the view/interface map (m_InterfaceVsViewMap) and deletes the 
associated view.

OnPartChange
Message handler 

This function handles the CAddonMain::OnPartChange events passed to it from 
CAddonMain.

It does the following:

� Deletes the m_pkParts array, which stores a copy of the parts in the 
document.

� Sets m_nparts (the length of m_pkParts) to zero.
� Gets the parts in the document from PS/Workshop again, and places them in 

m_pkParts.
� Sets m_nparts accordingly.

OnSelectTopols
Message handler 

This function handles the CAddonMain::OnSelectTopols events passed to it from 
CAddonMain.

Events can either be handled here or passed to the active view using the 
CAddonView class. 

HRESULT OnDocClose
(
--- received arguments ---

IPSWDoc *pDoc
)

Received arguments
pDoc The IPSWDoc interface associated with this document

HRESULT OnPartChange()

HRESULT OnSelectTopols()
40 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonDoc
OnViewClose
Message handler 

This function handles the CAddonMain::OnViewClose events passed to it from 
CAddonMain.

It traverses the view/interface map (m_InterfaceVsViewMap) and deletes the 
associated view.

OnViewOpen
Message handler 

This function handles the CAddonMain::OnViewOpen events passed to it from 
CAddonMain.

It traverses the view/interface map (m_InterfaceVsViewMap) and opens the 
associated view. 

HRESULT OnViewClose
(
--- received arguments ---

IPSWDoc *pDoc,
IPSWView *pView

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view

HRESULT OnViewOpen
(
--- received arguments ---

IPSWDoc *pDoc,
IPSWView *pView

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view
PS/Workshop V2.1 Developer Guide 41



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
OnCmdMsg
Message handler 

This function handles CAddonMain::OnCmdMsg events passed to it from 
CAddonMain.

It looks for a handler for the nID message in the CAddonDoc class. If it is unable 
to find a handler then the event is passed to the CAddonView class.

GetDocumentInterface
Interface access function 

This function returns the IPSWDoc interface.

GetSelectionInterface
Interface access function 

This function returns the IPSWSelectionList interface.

GetDrawInterface
Interface access function 

This function returns the IPSWDrawList interface.

GetPartInterface
Interface access function 

This function returns the IPSWParts interface.

HRESULT OnCmdMsg
(
--- received arguments ---

UINT nID,
void *lpparam = NULL

)

Received arguments
nID The ID associated with this command
lpparam Extra data related to the command

CComPtr<IPSWDoc>& GetDocumentInterface()

CComPtr<IPSWSelectionList>& GetSelectionInterface()

CComPtr<IPSWDrawList>& GetDrawInterface()

CComPtr<IPSWParts>& GetPartInterface()
42 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonDoc
GetRollbackInterface
Interface access function 

This function returns the IPSWRollback interface.

GetActiveView
Module method 

This function returns the currently active view. If there is no active view then this 
will return NULL.

GetParts
Module method 

This function returns the number of parts in the document. It interrogates and 
returns a copy of the parts in the PS/Workshop document.

This function allocates an array of the parts in PS/Workshop. It is up to the 
module to correctly free the returned array, using delete[].

OnMyFunction
Custom function 

This function is supplied to demonstrate the message handling functionality.

CComPtr<IPSWRollback>& GetRollbackInterface()

CAddonView* GetActiveView()

HRESULT GetParts
(
--- returned arguments ---

int &nParts, 
PK_PART_t *&pkParts 

)

Returned arguments
&nParts The number of parts
&pkParts The parts

Note: This function does not return m_nPart and m_pkParts variables defined 
in the CAddonDoc class

HRESULT OnMyFunction()
PS/Workshop V2.1 Developer Guide 43



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
When the module as created by the AppWizard is compiled and built, a new 
menu item is added to PS/Workshop. OnMyFunction is called when the user 
clicks on this new menu item. OnMyFunction simply displays a message 
indicating that this function has been reached. 

5.5 CAddonView
The CAddonView class represents a module view that shadows the current 
PS/Workshop view.

5.5.1 Summary
The following is a summary of the CAddonView class.

5.5.2 CAddonView functions
CAddonView contains the following functions.

CAddonView
Constructor 

Data members Description
CAddonDoc* m_doc A pointer to the parent CAddonDoc
CComQIPtr<IPSWView2> 
m_pViewInterface

The associated IPSWView2 interface

Constructors Description
CAddonView Constructs the CAddonView object

Message handlers Description
OnCmdMsg Handles the CAddonDoc::OnCmdMsg 

message

Interface access functions Description
CComQIPtr<IPSWView2>& 
GetViewInterface

Returns the encapsulated IPSWView2 interface

CAddonView
( 
--- received arguments ---

IPSWView *pView, 
CAddonDoc *pDoc

)

44 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CAddonView
This function constructs the CAddonView object.

OnCmdMsg
Message handler 

This function handles the CAddonDoc::OnCmdMsg message.

GetViewInterface
Interface access function 

This function returns the encapsulated IPSWView2 interface.

Received arguments
pView The associated IPSWView interface
pDoc The CAddonDoc associated with this CAddonView

HRESULT OnCmdMsg
(
--- received arguments ---

UINT nID,  
void *lpparam  

)

Received arguments
nID The ID associated with this message
lpparam Optional extra information for this message

CComQIPtr<IPSWView2>& GetViewInterface()
PS/Workshop V2.1 Developer Guide 45



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Module Structure
46 PS/Workshop V2.1 Developer Guide



6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6The PS/Workshop
Interfaces
PS/Workshop functionality is made available to modules through a number of 
COM interfaces. These interfaces have been designed to correspond as closely 
as possible to the Microsoft Foundation Classes (MFC) Multiple Document 
Interface (MDI) paradigm common in many Windows-based applications, 
including PS/Workshop. 

There are 3 main interfaces:
� IPSWApp: associated with the PS/Workshop application
� IPSWDoc: associated with an open document in PS/Workshop
� IPSWView2: associated with a given view on an open document in 

PS/Workshop

Similarly, the structure of a module created using the PS/Workshop AppWizard 
is designed to emulate the MDI structure, and provides the following classes:

� CAddonMain, which contains a pointer to the IPSWApp interface
� CAddonDoc, which contains a pointer to the IPSWDoc interface related to 

the document 
� CAddonView, which contains a pointer to the IPSWView interface associated 

with the view.
These classes are described in full in Chapter 5, “Module Structure”.

Interfaces Description
IPSWApp The IPSWApp interface represents the overall 

PS/Workshop application. There is exactly one 
IPSWApp interface for each instance of 
PS/Workshop. The IPSWApp interface is supplied to 
a module when the module is first loaded.
The IPSWApp interface contains functions for 
modifying the PS/Workshop user interface, opening 
documents and registering callback functions.

IPSWDoc The IPSWDoc interface represents each of the 
PS/Workshop parts (documents) currently open. For 
each open document there exists a corresponding 
IPSWDoc interface pointer. Those functions called 
from IPSWDoc only affect the associated 
PS/Workshop document.
PS/Workshop V2.1 Developer Guide 47



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The PS/Workshop Interfaces
Figure 6–1 shows how the various PS/Workshop interfaces interact. For a 
complete reference for all the functions available in each COM interface, see 
Appendix A, “Interface Functions”. For an introduction to the PS/Workshop draw 
list, see Chapter 9, “The Draw List”.

IPSWView This interface has been superseded by IPSWView2
IPSWView2 Each document open in PS/Workshop has one or 

more views attached. Each IPSWView is associated 
with an IPSWDoc.
Note: In the current version of PS/Workshop there is 
only one IPSWView associated with each IPSWDoc.

IPSWParts
IPSWSelectionList
IPSWRollback
IPSWDrawList

Each of these interfaces can be obtained from an 
IPSWDoc interface, and as such they only affect the 
associated document. They allow control over
� the number of Parasolid parts in the document
� the selection of entities
� Parasolid partitioned rollback
� custom drawing of entities

respectively.
IPSWEnumParts
IPSWEnumSelectionList
IPSWEnumDrawList

Each of these interfaces can be obtained from the 
associated IPSW interface (for example 
IPSWEnumParts can be obtained from IPSWParts). 
They allow the entities associated with each 
interface to be enumerated.

IPSWDrawOpts This interface can be obtained from IPSWDrawList 
(in which case it contains the current draw options). 
It provides control over how particular entities are 
displayed in the draw list.
IPSWDrawOpts is somewhat different from other 
interfaces, in that it can also be created and passed 
to the IPSWDrawList interface (in which case it 
contains the new draw options).

Interfaces Description
48 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 6–1 The PS/Workshop COM interface

IPSW Docs

AddDocument()
DeleteDocument()

IPSW App
ActiveDocument
Documents
StatusBarText
Version

AddMenuItem()
OpenDocument()
OpenNewDocument()
QueryPSW ModuleInterface()
RegisterFileOpenFunct ion()
RegisterFileSaveAsFunct ion()
CloseDocument()
AddMenuiItem2()

<<In terface >>

IPSW View
Curre ntOperation
Ren derFacetOpt io ns
Ren derLineOpt iions
Selec tionFilter
ViewCentre
ViewMatrix
ViewStyle

Fit ToScre en()
Sc aleView( )
ResetRenderOpt ions()
Zoo mToEntities( )
Rotate View()
Update()

<<Interface>>

IPSW EnumPart s

Clone()
Next()
Reset()
Skip()

<<Interfac e>>

IPSW EnumSelectionList

Clone()
Next()
Reset()
Skip()

<<Interface>>

IPSW EnumDrawList

Clone()
Next( )
Reset ()
Skip()

<<Interface>>

IPSW DrawOpts
Clip
Colour
DrawSense
N_U
N_V
Tolerance

Init()
Reset()

<<Interface>>

IPSW Views

AddView ()
De let eView( )

<<Interface>>

IPSW P art s
_NewEnum
Count
Item

AddItems()
IsEmpty()
IsMember()
RemoveAll()
RemoveItems()
ReplaceItems()

<<Interface>>

IPSW Rollbac k

Dele tePMark()
MakePMark()
RollbackTo( )

<<Interface>>

IPSW DrawList

_NewEnum
Count
DrawOpt ions
Item

AddItems()
AddItems2()
IsEmpty()
IsMember()
ModifyItems()
RemoveAll()
RemoveItem()
Update()

<<Interface>>

IPSW Selec tionList
_NewEnum
Count
Item
Colour

AddItems()
IsEmpty()
IsMember()
RemoveAll()
RemoveItems()
ResetColour()
ResetColour2()
SetColour()
SetColour2()

<<Interfac e>>

IPSW Doc
Colour
DocumentTit le
PartList
Draw List
Rollback
Select ionList
Views

SaveAsBMP()
SaveAsXGL()
SaveAsW MF()
Update()

<<Interface>>
PS/Workshop V2.1 Developer Guide 49



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The PS/Workshop Interfaces
50 PS/Workshop V2.1 Developer Guide



7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7Adding a New Menu Item
to PS/Workshop
You can add a new menu item to PS/Workshop using IPSWApp::AddMenuItem 
or IPSWApp::AddMenuItem2. Typically this is done in 
CAddonMain::StartModule, which is called when the module is first loaded. 

In order to add a new menu item you need to do the following:
� Define an ID to be associated with the new menu item. This ID must be 

unique within your module. 

The easiest way of doing this is to add a new ID via the Resources Symbol 
dialog in Visual Studio (View > Resource Symbols).

� Decide which class you want to handle the new menu item in. The class you 
choose depends on whether the menu item needs to operate at the 
application, document, or view level.

� Add a function to the chosen class. This function should return HRESULT.
� Modify OnCmdMsg in the chosen class to ensure that your function is called 

when it receives the ID.
For example, suppose that you wish to add a function called OnBlend with 
the ID ID_COMMAND_ON_BLEND to the CAddonDoc class. In this case, 
the CAddonDoc::OnCmdMsg would be as follows:
PS/Workshop V2.1 Developer Guide 51



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Adding a New Menu Item to PS/Workshop
� Add a call to AddMenuItem in CAddonMain::StartModule to add the menu 
item. 
For example, the following code above adds an Operations menu 
containing a Blend command to the document level of PS/Workshop (i.e. the 
menu is only available when a document has been opened) . The ID 
ID_COMMAND_ON_BLEND is also associated with the menu item.

IPSWApp::AddMenuItem2 provides additional functionality to AddMenuItem, so 
that you can specify the precise position of any menu or menu item in the 
PS/Workshop menu bar.

HRESULT CAddonDoc::OnCmdMsg(UINT nID, void* lpparm )
{
HRESULT hr = S_FALSE;

// either handle the event here...
switch( nID )
{
case ID_COMMAND_ON_BLEND:

OnBlend();
hr = S_OK;
break;

default:
break;

}
// check if the message has already been handled

if ( hr == S_FALSE)
{

// try routing this to the active view
CAddonView* pView = GetActiveView();
if ( pView )

hr = pView->OnCmdMsg( nID, lpparm );
}
return hr;

}

CComBSTR bstrMenuItem( OLESTR("&Operations\nBlend") );
HRESULT hr = m_pAppInterface->AddMenuItem(pApp, bstrMenuItem,

ID_COMMAND_ON_BLEND, PSW_Menu_Doc);
52 PS/Workshop V2.1 Developer Guide



8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8Registering Handlers for
Different Filetypes
If required, your module can load files into or save files from PS/Workshop with 
specific file extensions. In order to do this, you must register functions with 
PS/Workshop that are called when trying to either open or save files with the file 
extensions you want to use.

When it is called, each registered function is passed the filename of the file to 
open or save. It is then the responsibility of the registered function to correctly 
open or save the file. 
The following functions in the IPSWApp interface can be used to register 
handlers for different filetypes:

Function Description
RegisterFileOpenFunction This function takes a description string that 

contains two parts:
� The first part is the text that appears as an 

entry in the “Files of type” box in the File 
Open dialog.

� The second part contains information about 
the file extensions to be associated with the 
function. 

See the RegisterFileOpenFunction 
documentation for details of the exact formatting 
of the string.

RegisterFileSaveAsFunction This function is similar to 
RegisterFileOpenFunction, but the description 
appears in the File Save As dialog rather than 
the File Open dialog. 

See the RegisterFileSaveAsFunction 
documentation for details of the exact formatting 
of the string.
PS/Workshop V2.1 Developer Guide 53



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Registering Handlers for Different Filetypes
54 PS/Workshop V2.1 Developer Guide



9
9The Draw List

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1 Specifying which parts to render
By default, PS/Workshop attempts to render all the parts in a document. 
Sometimes, though, this might not be the best method: for example, you may 
only be interested in rendering a specific area of the document, or only one part 
in the document. In such cases you need to use the draw list. 
The draw list provides control over which entities to display, and how they should 
be displayed. There is one draw list associated with each document. Using the 
draw list also lets you display geometry in wireframe modes.

The following entity classes are supported by the draw list:

� PK_CLASS_body
� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_point
� PK_CLASS_curve and all subclasses
� PK_CLASS_surf and all subclasses
The draw list can be obtained from a document through the IPSWDoc::DrawList 
interface property.

Initially, the draw list for a given document is empty. Whenever this is the case, 
PS/Workshop draws all the parts in the document. If entities are subsequently 
added to the draw list, only those entities are displayed. 

Entities can be added to the draw list using IPSWDrawList::AddItems (which 
adds items to the draw list using the default draw options) or 
IPSWDrawList::AddItems2 (which adds items to the draw list using a specified 
set of draw options). An entity can only exist in a draw list once – attempting to 
add it again will cause the AddItems or AddItems2 (whichever was called) to fail. 
Entities can be removed from the draw list using IPSWDrawList::RemoveItems 
or IPSWDrawList::RemoveAll. Once the draw list is empty, PS/Workshop once 
again displays all parts in the document. 
PS/Workshop V2.1 Developer Guide 55



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Draw List
9.2 Setting drawing options
As well as adding entities to a draw list you can control how those entities are 
displayed using the IPSWDrawOpts interface. This interface is used as an 
argument for a number of the draw functions.

IPSWDrawOpts lets you control the following properties:

Further details of both the IPSWDrawList and IPSWDrawOpts interfaces can be 
found in Appendix A, “Interface Functions”.

Properties Description Entities affected
Clip Clip entity to part box (currently ignored) curves surfaces
Colour Colour in which to draw entity geometry 

topology
DrawSense Whether to display sense of entity edges curves 

faces surfaces
N_U Number of U param hatch lines to display surfaces
N_V Number of V param hatch lines to display surfaces
Tolerance Whether to display tolerance of entity edges vertices
ToleranceColour Colour in which to display entity 

tolerance
edges vertices
56 PS/Workshop V2.1 Developer Guide



A
AInterface Functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1 Introduction
This chapter provides a complete reference to all the functions and properties 
available in the COM interfaces provided by PS/Workshop. 
� For a more general introduction to the interfaces available, see Chapter 6, 

“The PS/Workshop Interfaces”.
� For an explanation of the support your module should provide for the 

interfaces, and the support provided by default when you use the 
PS/Workshop AppWizard, see Chapter 5, “Module Structure”.

As for all COM interfaces, the interfaces described in this chapter inherit the 
IUnknown interface. That is, they all have QueryInterface, AddRef, and Release 
methods to control the lifetimes of objects that expose the interface. See Section 
3.4, “Managing the lifetime of COM objects”, for more information.

A.2 IPSWApp
The IPSWApp interface represents the overall PS/Workshop application. There 
is exactly one IPSWApp interface for each instance of PS/Workshop. The 
IPSWApp interface is supplied to a module when the module is first loaded.
The IPSWApp interface contains functions for modifying the PS/Workshop user 
interface, opening documents and registering callback functions.

A.2.1 Summary
The following is a summary of the IPSWApp interface.

Properties 
Property Type Description
ActiveDocument IPSWDoc The currently active document 
Documents IPSWDocs The document collection object
StatusBarText BSTR The status bar text
Version double The current PS/Workshop version
PS/Workshop V2.1 Developer Guide 57



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Functions 

A.2.2 IPSWApp Properties

ActiveDocument

Returns the IPSWDoc interface pointer associated with the currently active 
document. If there is no active document this returns S_FALSE.

When get_ActiveDocument returns S_FALSE or E_FAIL, the value of ppDoc is 
undefined.

Attempts to activate the document associated with the pDoc interface.

Function Description
AddMenuItem Adds an item to a PS/Workshop menu
AddMenuItem2 Adds an item to a PS/Workshop menu in a 

specific position
OpenDocument Loads an existing Parasolid partfile
OpenNewDocument Opens a new (empty) document
CloseDocument Closes a given document
QueryPSWModuleInterface Queries for the existence of a particular 

interface 
RegisterFileOpenFunction Registers a custom FileOpen format
RegisterFileSaveAsFunction Registers a custom FileSaveAs format

HRESULT get_ActiveDocument
(
--- returned arguments ---

IPSWDoc **ppDoc
)

Returned arguments
ppDoc The Active document

HRESULT put_ActiveDocument
(
--- received arguments ---

IPSWDoc *pDoc 
)

58 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Documents

Returns the IPSWDocs interface (a collection of IPSWDoc interfaces) which can 
be used to interate over the documents in PS/Workshop.

StatusBarText

Returns the current text in the PS/Workshop status bar.

Received arguments
pDoc The document to activate

Specific Errors
E_INVALIDARG There is no document associated with the given pDoc.

HRESULT get_Documents
(
--- returned arguments ---

IPSWDocs **pDocs 
)

Returned arguments
pDocs The IPSWDocs interface

Note: The Documents property is intended for internal use. If you wish to 
examine the list of open documents in PS/Workshop, use the 
m_InterfaceVsDocMap member variable in the CAddonMain class.

HRESULT get_StatusBarText
(
--- returned arguments ---

BSTR *pText 
)

Returned arguments
pText The current status bar text

Note: It is reponsibility of the module to free the pText resource.
PS/Workshop V2.1 Developer Guide 59



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Example

Sets the text in the PS/Workshop status bar.

Example

Version

Returns the current version of PS/Workshop.

// allocated previously
CComPtr<IPSWApp> pApp;
CComBSTR bsStatusText;
HRESULT hr = pApp->get_StatusBarText(&bsStatusText);
if (SUCCEEDED( hr ) )
{

// convert the BSTR into a more usable CString
CString csStatusText = bsStatusText;

}

HRESULT put_StatusBarText
(
--- received arguments ---

BSTR Text
)

Returned arguments
Text The new status bar text

// allocated previously
CComPtr<IPSWApp> pApp;
CComBSTR bstrStatusText( OLESTR("Set Status Text") );
// or alternatively
// Cstring csStatusText = _T("Set Status Text");
// bstrStatusText.AllocSysString( bstrStatusText );
if (SUCCEEDED( pApp->put_StatusBarText ) )
{

// convert the BSTR into a more usable CString
CString csStatusText = bsStatusText;

}

HRESULT get_Version
(
--- returned arguments ---

double *pVersion
)

60 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.3 IPSWApp Functions

AddMenuItem

Adds an item to a PS/Workshop menu. If the menu does not already exist then it 
is created first.

CommandName must be a NULL separated string. 

� The last part of the string contains the text of the menu item to add.
� The first part of the string contains the text of the menu to add. 
You can add a cascading menu to PS/Workshop by specifying a string that 
contains more than two parts, as follows:
Menu\nCommand\nSub-Command
You can use the & character in CommandName to specify keyboard mnemonics 
for your menu and menu item that the user can use to access the new command. 
The character immediately after any & character in CommandName is used as the 
keyboard mnemonic for that part of the string. For example, the string
&Menu\nC&ommand
would create a Menu menu containing a Command item. A PS/Workshop user 
could access the new Command by typing Alt+M+O.

Returned arguments
pVersion The version.

HRESULT AddMenuItem
(
--- received arguments ---

IPSWAddIn *pAddIn, 
BSTR CommandName, 
long CommandID, 
PSW_Menu_Mode  mode 

)

Received arguments
pAddIn IPSWAddIn interface of module
CommandName Menu/Menu Item to add
CommandID The ID associated with the item
mode How to add the item
PS/Workshop V2.1 Developer Guide 61



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
CommandID contains the ID to be associated with the menu item. This is 
subsequently passed back to the module during the IPSWEvents::OnCommand 
event when the user chooses the menu item. 

The mode argument may have the following values:

See Chapter 7, “Adding a New Menu Item to PS/Workshop” for more information 
about adding menu items to PS/Workshop.

Example The following example adds a Debug menu to PS/Workshop that contains an 
Analyse command. When the user chooses this command the OnCommand 
message on the module is called with the CommandID ID_ON_ANALYSE. The & 
characters specify that the user can press Alt+D+A on the keyboard to access 
the Analyse command.

Note: You must take care to specify keyboard mnemonics that are unique and 
consistent. Specifying both &Debug and D&ebug in different calls to 
AddMenuItem results in two Debug menus being added to PS/Workshop: one 
accessible using Alt+D and the other accessible using Alt+E. You must also 
take care not to specify mnemonics that have already been used at that level.

Note: The CommandID should be unique within a module. 

Value Description
PSW_Menu_App Add the menu to the application level (such a menu is 

available before any document is open).
PSW_Menu_Doc Add the menu at a document level (the menu is only 

available once a document is open).

Specific Errors
E_INVALIDARG One of the arguments is invalid
PSWERR_ITEMALREADYEXISTS The item on the specified menu already 

exists
62 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AddMenuItem2

Adds an item to a PS/Workshop menu, specifying the precise position of the 
menu and menu item. If the menu does not already exist then it is created first.

CommandName must be a NULL separated string. 
� The last part of the string contains the text of the menu item to add.
� The first part of the string contains the text of the menu to add. 

You can add a cascading menu to PS/Workshop by specifying a string that 
contains more than two parts, as described in the documentation for 
AddMenuItem.

You can use & to specify keyboard mnemonics for menus and menu items, as 
described in the documentation for AddMenuItem. 

HRESULT hr = E_FAIL;
CComBSTR bstrMenuItem( OLESTR("&Debug\n&Analyse") );
hr = m_pAppInterface->AddMenuItem( pApp, bstrMenuItem, 
ID_ON_ANALYSE, PSW_Menu_Doc);
if ( SUCCEED(hr) )
{

// … do something
}

HRESULT AddMenuItem
(
--- received arguments ---

IPSWAddIn *pAddIn, 
BSTR CommandName,
long CommandID, 
PSW_Menu_Mode mode 
long menuPos, 
long itemPos

)

Received arguments
pAddIn IPSWAddIn interface of module
CommandName Menu/Menu Item to add
CommandID The ID associated with the item
mode How to add the item
menuPos The position in the existing PS/Workshop menu to add the 

new menu
itemPos The position in the menu to add the new menu item to
PS/Workshop V2.1 Developer Guide 63



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
CommandID contains the ID to be associated with the menu item. This is 
subsequently passed back to the module during the IPSWEvents::OnCommand 
event when the user chooses the menu item. 

The mode argument may have the following values:

See Chapter 7, “Adding a New Menu Item to PS/Workshop” for more information 
about adding menu items to PS/Workshop.

The menuPos argument lets you specify the position of the new menu in the 
PS/Workshop menu bar. Setting this to 0 makes the new menu the first one on 
the menu bar (at the left), setting it to 1 makes it the second menu, and so on. A 
value of -1 appends the new menu to the right hand end of the menu bar. 

The itemPos argument lets you specify the position of the new menu item in the 
PS/Workshop menu. Setting this to 0 makes the new item the first one on the 
menu, setting it to 1 makes it the second item, and so on. A value of -1 appends 
the new item to the end of the specified menu. 

Example The following example adds a Blend menu to PS/Workshop that contains a 
Notch command. When the user chooses this command the OnCommand 
message on the module is called with the CommandID ID_ON_NOTCH. The 
Blend menu is placed at position 5, which ensures that it appears between the 
Window and Help menus in PS/Workshop, and the Notch command is placed 

Note: The CommandID should be unique within a module. 

Value Description
PSW_Menu_App Add the menu to the application level (such a menu is 

available before any document is open).
PSW_Menu_Doc Add the menu at a document level (the menu is only 

available once a document is open).

Specific Errors
E_INVALIDARG One of the arguments is invalid
PSWERR_ITEMALREADYEXISTS The item on the specified menu already 

exists

Note: Although you can place new menus anywhere in the PS/Workshop menu 
bar, you should ensure that you conform to GUI design guidelines when 
designing your module.
64 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

at position 0, which ensures it is the first command in the Blend menu, 
regardless of other commands that may have been added.

OpenDocument

Loads a new part from file and opens a corresponding module document.

Example

HRESULT hr = E_FAIL;
CComBSTR bstrMenuItem( OLESTR("Bl&end\nNotch") );
hr = m_pAppInterface->AddMenuItem2( pApp, bstrMenuItem, 
ID_ON_NOTCH, PSW_Menu_Doc, 5, 0);
if ( SUCCEEDED(hr) )
{

// … do something
}

HRESULT OpenDocument
(
--- received arguments ---

BSTR fileName, 
--- returned arguments ---

IPSWDoc **ppDoc 
)

Received arguments
fileName The partfile to open
Returned arguments
ppDoc Pointer to the newly opened document interface

Note: It is a module's responsibility to ensure that the ppDoc interface is 
correctly managed 

// Previously initialised pointer
CComPtr<IPSWApp> pApp;
// our variable to store the returned interface
CcomPtr<IPSWDoc> pDoc = NULL;
HRESULT hr = pApp->OpenDocument("c:\\TestDoc.x_b", &pDoc );
if ( SUCCEEDED(hr))
{

//… do something with the pDoc
}

PS/Workshop V2.1 Developer Guide 65



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
OpenNewDocument

Opens a new document in PS/Workshop.

Usage:

CloseDocument

Closes the specified document.

HRESULT OpenNewDocument
(
--- returned arguments ---

IPSWDoc **ppDoc
)

Returned arguments
ppDoc Pointer to the newly opened document interface

Note: It is a module's responsibility to ensure that the ppDoc interface is 
correctly managed 

// Previously initialised pointer
CComPtr<IPSWApp> pApp;
// our variable to store the returned interface
CcomPtr<IPSWDoc> pDoc = NULL;
HRESULT hr = pApp->OpenNewDocument(&pDoc);
If ( SUCCEEDED(hr))
{

//… do something with the pDoc
}

HRESULT CloseDocument
(
--- received arguments ---

IPSWDoc *pDoc 
)

Received arguments
pDoc The interface of the document to close

Specific Errors
E_INVALID_ARG The given pDoc could not be found 
66 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QueryPSWModuleInterface

Queries if a module currently loaded in PS/Workshop supports a particular 
interface.

This function behaves in a similar way to IUnknown::QueryInterface. It allows 
one module to communicate with another module, so that modules can provide 
functionality to one another.

RegisterFileOpenFunction

Registers a function to act as a FileOpen handler, and adds an entry to the 
PS/Workshop File Open dialog to handle a particular file extension.

HRESULT QueryPSWModuleInterface
(
--- received arguments ---

GUID *riid, 
--- returned arguments ---

IUnknown **ppUnknown 
)

Received arguments
riid Reference identifier of the interface being requested
Returned arguments
ppUnknown Address of pointer which is filled if the query is successful

Note: It is a module's responsibility to ensure that the ppUnknown interface is 
correctly released.

HRESULT RegisterFileOpenFunction
(
--- received arguments ---

IPSWAddIn *pAddIn, 
BSTR description, 
long CommandID 

)

Received arguments
pAddIn The IPSWAddIn interface of the module.
description The type of files to associate with this function
CommandID The ID associated with the function
PS/Workshop V2.1 Developer Guide 67



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
If a registered filetype is subsequently opened from the PS/Workshop File Open 
dialog, the IPSWEvents::OnCommand function is called on the module with the 
CommandID of the registered function and a LPCSTR giving the full path name 
of the file to open. 

The supplied description is a specially formatted string that contains 
information about the file types to associate with the registered function and the 
accompanying text that appears in the PS/Workshop File Open dialog.
The string must be formatted in the following way:

File Description to appear in the dialog | 
File extensions to be associated with the function |

For example, Parasolid text XT files might have the following description:
"Parasolid Files (*.x_t;*.xmt_txt)|*.x_t;*.xmt_txt|"

For more information about registering handlers for filetypes, see Chapter 8, 
“Registering Handlers for Different Filetypes”.

RegisterFileSaveAsFunction

Registers a function to act as a FileSaveAs handler, and adds an entry to the 
PS/Workshop File Save As dialog to handle a particular file extension.

If the PS/Workshop File Save As dialog is subsequently used to save a 
registered filetype, the IPSWEvents::OnCommand function is called on the 

Note: The CommandID argument should be unique within any given module.

Specific Errors
PSW_ALREADY_REGISTERED At least one of the given file types is 

already registered

HRESULT RegisterFileSaveAsFunction
(
--- received arguments ---

IPSWAddIn *pAddIn, 
BSTR description, 
long CommandID

)

Received arguments
pAddIn The IPSWAddIn interface of the module.
description The type of files to associate with this function
CommandID The ID associated with the function
68 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

module with the CommandID of the registered function and a LPCSTR giving the 
full path name of the file to save. 

The supplied description is a specially formatted string that contains 
information about the file types to associate with the registered function and the 
accompanying text that appears in the PS/Workshop File Save As dialog.
The string must be formatted in the following way:

File Description to appear in the dialog | 
File extensions to be associated with the function |

For example, JPEG files might have the following description:
"JPG Files (*.jpg;*.jpeg)|*.jpg;*.jpeg|"

For more information about registering handlers for filetypes, see Chapter 8, 
“Registering Handlers for Different Filetypes”.

A.3 IPSWDoc
The IPSWDoc interface represents each of the PS/Workshop parts (documents) 
currently open. For each open document there exists a corresponding IPSWDoc 
interface pointer. Those functions called from IPSWDoc only affect the 
associated PS/Workshop document.

A.3.1 Summary
The following is a summary of the IPSWDoc interface.

Note: The CommandID argument should be unique within any given module.

Specific Errors
PSW_ALREADY_REGISTERED At least one of the given file types has 

already been registered
PS/Workshop V2.1 Developer Guide 69



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Properties 

Functions 

A.3.2 IPSWDoc Properties

Colour

Returns the colour of the given pkEnt. 

Property Type Description
Colour COLORREF The colour of an entity
DocumentTitle BSTR The title of the associated document
DrawList IPSWDrawList* The IPSWDrawList associated with 

this document
PartList IPSWParts* The IPSWParts interface associated 

with this document
Rollback IPSWRollback* The IPSWRollback associated with 

this document
SelectionList IPSWSelectionList* The IPSWSelectionList associated 

with this document

Function Description
SaveAsBMP Saves the document as a Windows BMP
SaveAsXGL Saves the document in RealityWave format
SaveAsWMF Saves the document in Extended MetaFile Format
Update Forces an update of the document in PS/Workshop

HRESULT get_Colour
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
--- returned arguments ---

COLORREF *pColour 
)

Received arguments
pkEnt An entity
Returned arguments
pColour The colour of the entity
70 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This works on the following classes of Parasolid entity:

� PK_CLASS_face, PK_CLASS_edge, PK_CLASS_vertex, PK_CLASS_body
� PK_CLASS_geom and all subclasses, if the entities are in a draw list
Attempting to return the colour of a geometric entity not in the draw list returns 
E_FAIL.

Sets the colour of the given pkEnt.

This works on the following classes of Parasolid entity:

� PK_CLASS_face, PK_CLASS_edge, PK_CLASS_vertex, PK_CLASS_body
� PK_CLASS_geom and all subclasses, if the entities are in a draw list

Attempting to set the colour of a geometric entity not in the draw list returns 
E_FAIL.

Note: If the entity is in a draw list then the colour returned may not be same as 
the colour the entity is currently displayed in.

Specific Errors
PSWERR_NOTANENTITY The given pkEnt is not a valid entity
PSWERR_INVALIDCLASS The given pkEnt is not a valid class

HRESULT put_Colour
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
COLORREF pColour

)

Received arguments
pkEnt An entity
Returned arguments
pColour The colour of the entity

Note: The entity is only drawn in the specified colour if it is not contained in a 
draw list.
PS/Workshop V2.1 Developer Guide 71



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
DocumentTitle

Returns the title of the current document.

The title of the document appears in the title bar of the PS/Workshop document 
window, and is also used in the list of currently open documents in the Window 
menu, and the list of recently used files in the File menu.

Sets the title of the current document.

The title of the document appears in the title bar of the PS/Workshop document 
window, and is also used in the list of currently open documents in the Window 
menu, and the list of recently used files in the File menu.

Specific Errors
PSWERR_NOTANENTITY The given pkEnt is not a valid entity

HRESULT get_DocumentTitle
(
--- returned arguments ---

BSTR *pDocTitle 
)

Returned arguments
pDocTitle The title of the document

Note: It is a module's responsibility to ensure that the pDocTitle resource is 
correctly freed.

HRESULT put_DocumentTitle
(
--- received arguments ---

BSTR DocTitle
)

Received arguments
DocTitle The new title of the document
72 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DrawList

Returns the IPSWDrawList associated with the document.

PartList

Returns the IPSWParts associated with the document.

Rollback

Returns the IPSWRollback interface associated with the document.

HRESULT get_DrawList
(
--- returned arguments ---

IPSWDrawList **ppDrawList
)

Returned arguments
ppDrawList The draw list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of ppDrawList 
is correctly handled.

HRESULT get_PartList
(
--- returned arguments ---

IPSWParts **ppPartList
)

Returned arguments
ppPartList The part list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of ppPartList 
is correctly handled.

HRESULT get_Rollback
(
--- returned arguments ---

IPSWRollback **ppRollback
)

PS/Workshop V2.1 Developer Guide 73



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
SelectionList

Returns the IPSWSelectionList associated with the document

A.3.3 IPSWDoc Functions

SaveAsBMP

Saves the current document in Windows bitmap format (*.bmp).

Returned arguments
ppRollback The IPSWRollback associated with the document

Note: It is a module's responsibility to ensure that the lifetime of ppRollback 
is correctly handled.

HRESULT get_SelectionList
(
--- returned arguments ---

IPSWSelectionList **ppSelectionList
)

Returned arguments
ppSelectionList The selection list associated with the document

Note: It is a module's responsibility to ensure that the lifetime of 
ppSelectionList is correctly handled.

HRESULT SaveAsBMP
(
--- received arguments ---

LPCTSTR lpszPathName 
)

Received arguments
lpszPathName Name to save the file to
74 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SaveAsXGL

Saves the parts in the document in RealityWave format (*.xgl).

SaveAsWMF

Saves the parts in the document in Enhanced Metafile format (*.emf).

Update

Tells PS/Workshop that the parts in the document have changed and forces an 
update.

The render option controls whether the parts in the document should be 
completely redrawn, and is included for performance reasons. Setting render to 
FALSE allows you to improve the performance of an operation by ensuring that 
the document is not redrawn unnecessarily. 

HRESULT SaveAsXGL
(
--- received arguments ---

LPCTSTR lpszPathName 
)

Received arguments
lpszPathName Name to save the file to

HRESULT SaveAsWMF
(
--- received arguments ---

LPCTSTR lpszPathName 
)

Received arguments
lpszPathName Name to save the file to

HRESULT Update
(
--- received arguments ---

BOOL render
)

Received arguments
render Whether to force a redraw of the parts in the document
PS/Workshop V2.1 Developer Guide 75



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
The final call in any sequence of calls to Update should pass render as TRUE 
to ensure that the display is correctly updated.

A.4 IPSWParts
This interface allows control over the number of Parasolid parts in a 
PS/Workshop document. You can use the functionality in this interface to add, 
remove, or interrogate parts in a document. It can be obtained from the IPSWDoc 
interface, and so only affects the associated document.

As an alternative to this interface, you can use direct calls to Parasolid. You might 
find it easier to use Parasolid functionality directly rather than use this interface. 
So long as parts have been created in a partition associated with a document, 
calling IPSWDoc::Update correctly handles the part list whenever necessary. For 
example, a part can be removed from the part list by calling PK_ENTITY_delete, 
and then calling Update.

A.4.1 Summary
The following is a summary of the IPSWParts interface.
Properties 

Functions 

Property Type Description
_NewEnum IUnknown* Returns the IPSWEnumParts interface 
Count int The number of items in the part list
Item PK_PART_t An index into the part list

Function Description
AddItems Adds entities to the part list
IsEmpty Tests for an empty part list condition
IsMember Tests if an entity is a member of the list
RemoveAll Removes all items from the list
RemoveItems Removes a number of items from the list
ReplaceItems Replace a number of items in the list
76 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.4.2 IPSWParts properties

_NewEnum

Returns the IPSWEnumParts interface associated with the IPSWParts interface.

This differs from get_Item in that get__NewEnum can be used to return more 
than one item at a time, so using this property in preference to get_Item could 
improve performance in some situations.

You can use the IPSWEnumParts interface to enumerate the parts in the 
IPSWParts interface. For more information see the definition of 
IPSWEnumParts.

The returned interface only represents a snapshot of the part list. It is not updated 
if the part list changes.

Count

Returns the number of entities in the part list.

HRESULT get__NewEnum
(
--- returned arguments ---

IUnknown **ppunkEnum 
)

Returned arguments
ppunkEnum The returned IPSWEnumParts

Note: It is a module's responsibility to manage the lifetime of ppunkEnum.

HRESULT get_Count
(
--- returned arguments ---

int *pCount 
)

Returned arguments
pCount The number of entities in the part list
PS/Workshop V2.1 Developer Guide 77



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Item

Returns the pEnt at position index in the part list.

The part list is a zero based index system: index >= 0 and index < n - 1 where 
n is the number of entities in the list.
This can only be used to return a single item in the part list at a time. To return 
more than one item, use get__NewEnum.

A.4.3 IPSWParts functions

AddItems

Adds a list of parts to the part list.

HRESULT get_Item
(
---received arguments ---

int index,
--- returned arguments ---

PK_PART_t *pEnt 
)

Received arguments
index The index into the part list
Returned arguments
pEnt The entity at index

Specific Errors
E_INVALIDARG index is not in range

HRESULT AddItems
(
--- received arguments ---

int nParts 
PK_PART_t *pkParts 

)

Received arguments
nParts The number of parts
pkParts The parts
78 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IsEmpty

Indicates whether the part list contains any elements. 

Empty is TRUE if the list is empty, FALSE otherwise.

IsMember

Indicates whether pkPart is a member of the part list. 

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

RemoveAll

Removes all the parts in the part list.

HRESULT IsEmpty
(
--- returned arguments ---

BOOL *Empty 
)

Returned arguments
Empty Whether the list is empty or not

HRESULT IsMember
(
--- received arguments ---

PK_PART_t pkPart, 
--- returned arguments ---

BOOL *member 
)

Received arguments
pkPart The part to check
Returned arguments
member Whether it is a member

HRESULT RemoveAll
(
)

PS/Workshop V2.1 Developer Guide 79



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
RemoveItems

Removes the specified parts from the part list.

ReplaceItems

Replaces all the parts in the list with the specified pNewParts.

A.5 IPSWSelectionList
This interface allows control over the selection of entities in a PS/Workshop 
document. It can be obtained from the IPSWDoc interface, and so only affects 
the associated document.

A.5.1 Summary
The following is a summary of the IPSWSelectionList interface.

HRESULT RemoveItems
(
--- received arguments ---

int nParts 
PK_PART_t *pkParts 

)

Received arguments
nParts The number of parts
pkParts The parts

HRESULT ReplaceItems
(
--- received arguments ---

int nNewPartCount
PK_PART_t *nNewPartCount

)

Received arguments
nNewPartCount The number of parts
nNewPartCount The parts
80 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Properties 

Functions 

A.5.2 IPSWSelectionList Properties

_NewEnum

Returns the IPSWEnumSelectionList interface associated with the 
IPSWSelectionList. 

Property Type Description
_NewEnum IUnknown* Returns the IPSWEnumSelectionList interface 
Colour COLORREF The colour of an item
Count int The number of items in the list
Item PK_ENTITY_t An item in the list

Function Description
AddItems Adds entities to the list
IsEmpty Tests for an empty list condition
IsMember Tests if an entity is a member of the list
RemoveAll Removes all items from the list
RemoveItems Removes a number of items from the list
ResetColour Resets the selection colour
ResetColour2 Resets the selection colour
SetColour Sets the selection colour
SetColour2 Sets the selection colour

HRESULT get__NewEnum
(
--- received arguments ---

PK_CLASS_t pkClass 
--- returned arguments ---

IUnknown **ppunkEnum
)

Received arguments
pkClass The class of requested entities
Returned arguments
ppunkEnum The returned IPSWEnumSelectionList
PS/Workshop V2.1 Developer Guide 81



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
This differs from get_Item in that get__NewEnum can be used to return more 
than one item at a time, so using this property in preference to get_Item could 
improve performance in some situations.

The IPSWEnumSelectionList interface can be used to enumerate the entities in 
the IPSWSelectionList interface. For more information see the definition of 
IPSWEnumSelectionList.
The returned interface only represents a snapshot of the selection list. It is not 
updated if the selection list changes.

The pkClass argument determines the type of entities in the selection list to 
enumerate through. This can have the following values:

Colour

Returns the selection colour of the given pkEnt.

Note: It is a module's responsibility to manage the lifetime of ppunkEnum.

Value Description
PK_CLASS_null
PK_CLASS_topol

Return all entities in the selection list.

PK_CLASS_body
PK_CLASS_face
PK_CLASS_edge
PK_CLASS_vertex

Enumerate only those entities of the given type.

Specific Errors
PSWERR_INVALIDCLASS Invalid class type 

HRESULT get_Colour
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
--- returned arguments ---

COLORREF *pColour 
)

Received arguments
pkEnt The entity
82 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sets the selection colour of pkEnt.

Count

Returns the number of entities in the selection list.

The pkClass argument determines the type of entities in the selection list to 
enumerate. This can have the following values:

Returned arguments
pColour The selection colour of pkEnt

HRESULT put_Colour
(
--- received arguments ---

PK_ENTITY_t pkEnt, --- The entity
COLORREF Colour --- The new selection colour for pkEnt

)

Received arguments

Returned arguments

HRESULT get_Count
(
--- received arguments ---

PK_CLASS_t pkClass 
--- returned arguments ---

int *pCount 
)

Received arguments
pkClass The class of entities
Returned arguments
pCount The number of entities in the selection list
PS/Workshop V2.1 Developer Guide 83



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Item

Returns the pEnt at position index in the selection list.

The selection list is a zero based index system: index >= 0 and index < n - 1 
where n is the number of entities in the list.

This can only be used to return a single item in the selection list at a time. To 
return more than one item, use get__NewEnum.

Value Description
PK_CLASS_null
PK_CLASS_topol

All entities in the list

PK_CLASS_body
PK_CLASS_face
PK_CLASS_edge
PK_CLASS_vertex

Only those entities of the given type

Specific Errors
PSWERR_INVALIDCLASS Invalid class type 

HRESULT get_Item
(
---received arguments ---

PK_CLASS_t pkClass 
int index, 

--- returned arguments ---
PK_PART_t *pEnt

)

Received arguments
pkClass Class of entity
index The index into the selection list
Returned arguments
pEnt The entity at index

Specific Errors
E_INVALIDAR index is not in range
PSWERR_INVALIDCLASS pkClass is not a valid class
84 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.5.3 IPSWSelectionList Functions

AddItems

Adds a list of parts to the selection list.

The class of pEnts can be one of the following:
� PK_CLASS_body
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_face

IsEmpty

Indicates whether the selection list contains any elements. 

Empty is TRUE if the list is empty, FALSE otherwise.

HRESULT AddItems
(
--- received arguments ---

int nEnts 
PK_ENTITY_t *pEnts 

)

Received arguments
nEnts The number of entities
pEnts The entities

Specific Errors
PSWERR_INVALIDCLASS Class of one of the pEnts is invalid
PSWERR_NOTANENTITY An item in pEnts is not an entity

HRESULT IsEmpty
(
--- returned arguments ---

BOOL *Empty 
)

Returned arguments
Empty Whether the list is empty or not
PS/Workshop V2.1 Developer Guide 85



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
IsMember

Indicates whether pkPart is a member of the selection list. 

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

RemoveAll

Removes all the entities in the selection list.

RemoveItems

Removes the specified entities from the selection list.

HRESULT IsMember
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
--- returned arguments ---

BOOL *member 
)

Received arguments
pkEnt The entity to check
Returned arguments
member Whether it is a member

Specific Errors
PSWERR_INVALIDCLASS Class of pkEnt is invalid
PSWERR_NOTANENTITY pkEnt is not an entity

HRESULT RemoveAll
(
)

HRESULT RemoveItems
(
--- received arguments ---

int nEnts 
PK_ENTITY_t *pkEnts 

)

86 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ResetColour

Resets the selection colour of all the entities in the document.

The default selection color is specified in the Default Colors tab of the Options 
dialog in PS/Workshop.

ResetColour2

Resets the selection colour for the specified entities.

The default selection color is specified in the Default Colors tab of the Options 
dialog in PS/Workshop.

Received arguments
nEnts The number of entities
Returned arguments
pkEnts The entities

Specific Errors
PSWERR_INVALIDCLASS Class of one of pkEnts is invalid
PSWERR_NOTANENTITY One of pkEnts is not an entity

HRESULT ResetColour
(
)

HRESULT ResetColour2
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities
PS/Workshop V2.1 Developer Guide 87



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
SetColour

Sets the selection colour for all entities in the selection list

SetColour2

Sets the selection colour for the given pkEnts.

A.6 IPSWDrawList
This interface allows control over custom drawing of entities in a PS/Workshop 
document. It can be obtained from the IPSWDoc interface, and so only affects 
the associated document.

A.6.1 Summary
The following is a summary of the IPSWDrawList interface.

HRESULT SetColour
(
--- received arguments ---

COLORREF colour 
)

Received arguments
colour The new selection colour

HRESULT SetColour2
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts, 
COLORREF colour 

)

Received arguments
nEnts The number of entities
pkEnts The entities
colour The new selection colour
88 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Properties 

Functions 

A.6.2 IPSWDrawList properties

_NewEnum

Returns the IPSWEnumDrawList interface associated with the IPSWDrawList 
interface. 

This differs from get_Item in that get__NewEnum can be used to return more 
than one item at a time, so using this property in preference to get_Item could 
improve performance in some situations.

Property Type Description
_NewEnum IUnknown* Returns the IPSWEnumSelectionList interface 
Count int The number of items in the list
DrawOptions IPSWDrawOpts* The draw options for the list
Item PK_ENTITY_t An item in the list

Function Description
AddItems Adds entities to the list
AddItems2 Adds entities to the list
IsEmpty Tests for an empty list condition
IsMember Tests if an entity is a member of the list
ModifyItems Changes the draw options 
RemoveAll Removes all items from the list
RemoveItems Removes a number of items from the list
Update Forces an update (re-render) for the given entities

HRESULT get__NewEnum
(
--- returned arguments ---

IUnknown **ppunkEnum 
)

Returned arguments
ppunkEnum The returned IPSWEnumDrawList
PS/Workshop V2.1 Developer Guide 89



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Count

Returns the number of entities in the draw list.

DrawOptions

Returns the IPSWDrawOpts interface associated with the IPSWDrawList 
interface

Note: It is a module's responsibility to manage the lifetime of ppunkEnum.

HRESULT get_Count
(
--- returned arguments ---

int *pCount 
)

Returned arguments
pCount The number of entities in the list

HRESULT get__DrawOptions
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
--- returned arguments ---

IPSWDrawOpts **ppDrawOpts 
)

Received arguments
pkEnt The entity to obtain the draw options
Returned arguments
ppDrawOpts The returned IPSWDrawOpts interface

Note: It is a module's responsibility to manage the lifetime of ppDrawOpts.
90 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Item

Returns the pEnt at position index in the draw list.

The draw list is a zero based index system: index >= 0 and index < n - 1 where 
n is the number of entities in the list.
This can only be used to return a single item in the draw list at a time. To return 
more than one item, use get__NewEnum.

A.6.3 IPSWDrawList functions

AddItems

Add entities to the draw list using the default draw options

HRESULT get_Item
(
--- received arguments ---

int index, 
--- returned arguments ---

PK_ENTITY_t *pEnt
)

Received arguments
index The position in the draw list of the item you require
Returned arguments
pEnt The returned item

Specific Errors
E_INVALIDARG index is not in range

HRESULT AddItems
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities to add to list
PS/Workshop V2.1 Developer Guide 91



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
The following entity classes are allowed:

� PK_CLASS_body
� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_curve, and all subclasses
� PK_CLASS_surf, and all subclasses
� PK_CLASS_point
Any given entity must appear once and only once in the draw list. Attempting to 
add an item for the second time produces the error 
PSWERR_ITEMALREADYEXISTS

AddItems2

Add Items to the draw list using the draw options specified by pDrawOpts. 

The following entity classes are allowed:

� PK_CLASS_body
� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_curve, and all subclasses
� PK_CLASS_surf, and all subclasses
� PK_CLASS_point

Specific Errors
PSWERR_ITEMALREADYEXISTS Item already exists in list
PSWERR_INVALIDCLASS Class of one of pkEnts is invalid
PSWERR_NOTANENTITY One of pkEnts is not a valid entity

HRESULT AddItems2
(
--- received arguments ---

int nEnts,
PK_ENTITY_t *pkEnts, 
IPSWDrawOpts *pDrawOpts

)

Received arguments
nEnts The number of entities
pkEnts The entities to add to list
pDrawOpts Draw Options to apply to pkEnts
92 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any given entity must appear once and only once in the draw list. Attempting to 
add an item for the second time produces the error 
PSWERR_ITEMALREADYEXISTS

IsEmpty

Indicates whether the draw list contains any elements. 

Empty is TRUE if the list is empty, FALSE otherwise.

IsMember

Indicates whether pkEnt is a member of the list. 

Member is TRUE if pkPart is a member of the list, FALSE otherwise.

Specific Errors
PSWERR_ITEMALREADYEXISTS Item already exists in list
PSWERR_INVALIDCLASS Class of one of pkEnts is invalid
PSWERR_NOTANENTITY One of pkEnts is not a valid entity

HRESULT IsEmpty
(
--- returned arguments ---

BOOL *Empty 
)

Returned arguments
Empty Whether the list is empty or not

HRESULT IsMember
(
--- received arguments ---

PK_ENTITY_t pkEnt, 
--- returned arguments ---

BOOL *member 
)

Received arguments
pkEnt The entity to check
Returned arguments
member Whether it is a member
PS/Workshop V2.1 Developer Guide 93



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
ModifyItems

Modifies the draw options for the specified pkEnts.

RemoveAll

Removes all the entities in the draw list.

RemoveItems

Removes the given entities from the draw list.

HRESULT ModifyItems
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts, 
IPSWDrawOpts *pDrawOpts 

)

Received arguments
nEnts The number of entities
pkEnts The entities
pDrawOpts The new draw options for the pkEnts

Specific Errors
PSWERR_NOTINLIST At least one of pkEnts is not in the list

HRESULT RemoveAll
(
)

HRESULT RemoveItems
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities
94 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Update

Forces an update (re-render) of the given entities in the draw list.

A.7 IPSWDrawOpts
This interface can be obtained from IPSWDrawList (in which case it contains the 
current draw options). It provides control over how particular entities are 
displayed in the draw list.

IPSWDrawOpts is somewhat different from other interfaces, in that it can also be 
instantiated and passed to the IPSWDrawList interface (in which case it contains 
the new draw options). To instantiate this interface, you need to use the 
CoCreateInstance function, as described in Section 3.2, “Creating a COM 
object”.

A.7.1 Summary
The following is a summary of the IPSWDrawOpts interface.

Specific Errors
PSWERR_NOTINLIST At least one of pkEnts is not in the selection list

HRESULT Update
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities

Specific Errors
PSWERR_NOTINLIST At least one of pkEnts is not in the draw list
PS/Workshop V2.1 Developer Guide 95



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Properties 

Functions 

A.7.2 IPSWDrawOpts Properties

Clip

Returns the clip option for the entity.

This option is currently ignored.

Sets the clip option for the entity.

Property Type Description
Clip BOOL Clip entity to part box (FALSE)
Colour COLORREF Colour to draw entity (-1)
DrawSense BOOL Whether to display sense of entity 

(FALSE)
N_U int Number of U param hatch lines (0)
N_V int Number of V param hatch lines (0)
Tolerance BOOL Whether to display tolerance of entity 

(FALSE)
ToleranceColour COLORREF Colour to draw tolerance in (-1)

Function Description
Init Initialise draw options
Reset Reset draw options to their default values

HRESULT get_Clip
(
--- returned arguments ---

BOOL *pVal 
)

Returned arguments
pVal Clip status

HRESULT put_Clip
(
--- received arguments ---

BOOL newVal 
)

96 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This option is currently ignored.

Colour

Returns the draw colour for the entity.

Sets the draw colour for the entity.

Specifying Colour as -1 draws the entity in the default colour.

Received arguments
newVal New clip status

HRESULT get_Colour
(
--- returned arguments ---

COLORREF *pColour 
)

Returned arguments
pColour The draw colour of entity

Specific Errors
S_FALSE The draw colour has not been set, in which case 

pColour is set to -1

HRESULT put_Colour
(
--- received arguments ---

COLORREF Colour 
)

Received arguments
Colour The new draw colour for entity
PS/Workshop V2.1 Developer Guide 97



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
DrawSense
The DrawSense flag is only valid for entities of the following classes:

� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_curve
� PK_CLASS_surf

If this flag is set for other class types it is ignored. 
In the case of faces and surfaces, setting DrawSense to TRUE displays a 
face/surface normal in the same colour as the face/surface. For edges/curves an 
arrow is drawn depicting the direction going from the low to the high parameter.

Gets the draw sense option for the entity

Sets the draw sense for the entity

N_U
The N_U flag is only valid for entities of class PK_CLASS_surf. It is ignored for 
all other entity classes.

HRESULT get_DrawSense
(
--- returned arguments ---

BOOL *pValue 
)

Returned arguments
pValue Whether to draw the sense of the entity

HRESULT put_DrawSense
(
--- received arguments ---

BOOL newVal 
)

Received arguments
newVal The new draw sense for entity
98 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Returns the number of u parameter lines for the entity.

Sets the number of U parameter lines for the entity.

N_V
The N_V flag is only valid for entities of class PK_CLASS_surf. It is ignored for 
all other entity classes.

Returns the number of v parameter lines for the entity.

HRESULT get_N_U
(
--- returned arguments ---

int *pVal 
)

Returned arguments
pVal The number of U parameter lines

HRESULT put_N_U
(
--- received arguments ---

int newVal 
)

Received arguments
newVal The new number of U parameter lines

Specific Errors
E_INVALIDARG The pVal argument < 0

HRESULT get_N_V
(
--- returned arguments ---

int *pVal 
)

Returned arguments
pVal The number of V parameter lines
PS/Workshop V2.1 Developer Guide 99



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Sets the number of V parameter lines for the entity.

Tolerance
This option is only valid for entities of class PK_CLASS_edge and class 
PK_CLASS_vertex. It is ignored for all other entity classes. In addition, this 
option only has a visible effect if the edge or vertex is tolerant.

� For tolerant edges, a tube is displayed around the edge with the same radius 
as the edge tolerance.

� For tolerant vertices, a sphere based on the point of the vertex is displayed 
with the same radius as the vertex tolerance.

Returns whether the tolerance of an entity should be displayed.

Sets whether the tolerance of an entity should be displayed

HRESULT put_N_V
(
--- received arguments ---

int newVal 
)

Received arguments
newVal The new number of V parameter lines

Specific Errors
E_INVALIDARG The pVal argument < 0

HRESULT get_Tolerance
(
--- returned arguments ---

BOOL *pVal
--- 
)

Returned arguments
pVal Whether to display the tolerance of an entity

HRESULT put_Tolerance
(
--- received arguments ---

BOOL newVal 
)

100 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ToleranceColour
This option is only used if the Tolerance option is set. As with Tolerance , this 
option is only valid for entities of class PK_CLASS_edge and 
PK_CLASS_vertex. It is ignored for all other entity classes. 

If the ToleranceColour is not set then the tolerance is displayed in the same 
colour as the entity.

Returns the colour in which to draw the tolerance of an entity. 

This function is currently not implemented and returns E_NOTIMPL.

Sets the colour in which to draw the tolerance of an entity.

This function is currently not implemented and returns E_NOTIMPL.

Received arguments
newVal Whether to display the tolerance of an entity

HRESULT get_ToleranceColour
(
--- returned arguments ---

COLORREF *pVal 
)

Returned arguments
pVal The colour

HRESULT put_ToleranceColour
(
--- received arguments ---

COLORREF newVal 
)

Received arguments
newVal The colour
PS/Workshop V2.1 Developer Guide 101



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
A.7.3 IPSWDrawOpts Functions

Init

Allows a number of draw options to be set in one function call.

Reset

Resets the draw options to their default values.

A.8 IPSWRollback
This interface provides access to Parasolid partitioned rollback functionality. It 
can be obtained from the IPSWDoc interface, and so only affects the associated 
document.

HRESULT Init
( 
--- received arguments ---

int n_u, 
int n_v, 
COLORREF col, 
BOOL clipToPartBox, 
BOOL drawSense, 
BOOL tolerance 

)

Received arguments
n_u N_U
n_v N_V
col Colour
clipToPartBox Clip
drawSense DrawSense
tolerance Tolerance

Specific Errors
E_INVALIDARG Either n_u or n_v is < 0

HRESULT Reset
(
)

102 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.1 Summary
The following is a summary of the IPSWRollback interface.

Functions 

A.8.2 IPSWRollback functions

DeletePMark

Deletes an existing pMark.

MakePMark

Creates a new pMark.

Note: You should use these wrapper functions rather than calling Parasolid 
PK_PMARK functions directly. 

Function Description
DeletePMark Deletes an existing pMark
MakePMark Creates a new pMark
RollbackTo Rollbacks to an existing pMark

HRESULT DeletePMark
(
--- received arguments ---

PK_PMARK_t pMark 
)

Received arguments
pMark The pMark

HRESULT MakePMark
(
--- returned arguments ---

PK_PMARK_t *pMark 
)

Returned arguments
pMark The new pMark
PS/Workshop V2.1 Developer Guide 103



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
RollbackTo

Rollback the document to the specified pMark.

The del argument controls whether to delete pMark after rolling back to it. If del 
is TRUE then pMark is deleted, and also returned by the function as 
PK_ENTITY_null.

A.9 IPSWEnumDrawList
Provides enumeration over the entities in the draw list

This interface can be obtained from the IPSWDrawList interface using the 
IPSWDrawList::_NewEnum property. Once obtained the interface can be used to 
enumerate over all the entities in the IPSWDrawList. Note that the _NewEnum 
property returns a snapshot of the IPSWDrawList and is not updated if the draw 
list is changed externally.

A.9.1 Summary
The following is a summary of the IPSWEnumDrawList interface.
Functions 

HRESULT RollbackTo
(
--- received arguments ---

PK_PMARK_t *pMark,
BOOL del 

)

Received arguments
pMark The pMark to roll to
del Whether to delete pMark

Note: This function can be used to either rollback or rollforward to a pMark.

Function Description
Clone Creates a copy of this enumeration
Next Returns the next set of items in the enumeration
Reset Resets the enumeration sequence to the beginning
Skip Skips over the next specified number of elements in the 

enumeration
104 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.9.2 IPSWEnumDrawList functions

Clone

Creates another enumerator that contains the same enumeration state as the 
current one.

If the function succeeds then ppenum is a pointer to a new IPSWEnumDrawList. 
If the function fails then the value of ppenum is undefined.

Next

Retrieves the next celt items in the enumeration sequence.

HRESULT Clone
(
--- returned arguments ---

IPSWEnumDrawList **ppenum 
)

Returned arguments
ppenum The returned IPSWEnumDrawList

Note: It is a module's responsibility to ensure that the lifetime of ppenum is 
correctly handled

HRESULT Next
(
--- received arguments ---

ULONG celt, 
--- returned arguments ---

PK_ENTITY_t *rgelt, 
ULONG *pceltFetched 

)

Received arguments
celt The number of elements requested
Returned arguments
rgelt Returned entities
pceltFetched The number of entities actually returned (may be NULL)
PS/Workshop V2.1 Developer Guide 105



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
If there are fewer than the requested items left in the sequence, this function 
retrieves the remaining elements. The number of elements actually retrieved is 
returned in the pceltFetched argument.

Reset

Resets the enumeration sequence to the beginning.

Skip

Skips over the next specified number of elements in the enumeration sequence.

A.10 IPSWEnumParts
Provides enumeration over the entities in the part list
This interface can be obtained from the IPSWParts interface using the 
IPSWParts::_NewEnum property. Once obtained the interface can be used to 
enumerate over all the entities in the IPSWParts. Note that the _NewEnum 
property returns a snapshot of the IPSWParts and is not updated if the number 
of parts in the document are changed externally.

A.10.1 Summary
The following is a summary of the IPSWEnumParts interface.

Functions 

HRESULT Reset
(
)

HRESULT Skip
(
--- received arguments ---

ULONG celt 
)

Received arguments
celt The number of elements to skip

Function Description
Clone Creates a copy of this enumeration
Next Returns the next set of items in the enumeration
106 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.10.2 IPSWEnumParts functions

Clone

Creates another enumerator that contains the same enumeration state as the 
current one

If the function succeeds then ppenum is a pointer to a new IPSWEnumParts. If it 
fails then the value of ppenum is undefined.

Next

Retrieves the next celt items in the enumeration sequence.

Reset Resets the enumeration sequence to the beginning
Skip Skips over the next specified number of elements in the 

enumeration

Function Description

HRESULT Clone
(
--- returned arguments ---

IPSWEnumParts **ppenum 
)

Returned arguments
ppenum The returned IPSWEnumParts

Note: It is a module's responsibility to ensure that the lifetime of ppenum is 
correctly handled.

HRESULT Next
(
--- received arguments ---

ULONG celt, 
--- returned arguments ---

PK_PART_t *rgelt, 
ULONG *pceltFetched 

)

PS/Workshop V2.1 Developer Guide 107



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
If there are fewer than the requested items left in the sequence, this function 
retrieves the remaining elements. The number of elements actually retrieved is 
returned in the pceltFetched argument.

Reset

Resets the enumeration sequence to the beginning.

Skip

Skips over the next specified number of elements in the enumeration sequence.

A.11 IPSWEnumSelectionList
Provides enumeration over the entities in the selection list.
This interface can be obtained from the IPSWSelectionList interface using the 
IPSWSelectionList::_NewEnum property. Once obtained the interface can be 
used to enumerate over all the entities in the IPSWSelectionList. It should be 
noted that the _NewEnum property returns a snapshot of the IPSWSelectionList 
and is not updated if the selection list is changed externally.

Received arguments
celt The number of elements requested
Returned arguments
rgelt Returned entities
pceltFetched The number of entities actually returned (may be NULL)

HRESULT Reset
(
)

HRESULT Skip
(
--- received arguments ---

ULONG celt 
)

Received arguments
celt The number of elements to skip
108 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.11.1 Summary
The following is a summary of the IPSWEnumSelectionList interface.

Functions 

A.11.2 IPSWEnumSelectionList functions

Clone

Creates another enumerator that contains the same enumeration state as the 
current one.

If the function succeeds then ppenum is a pointer to a new 
IPSWEnumSelectionList. If it fails then the value of ppenum is undefined.

Function Description
Clone Creates a copy of this enumeration
Next Returns the next set of items in the enumeration
Reset Resets the enumeration sequence to the beginning
Skip Skips over the next specified number of elements in the 

enumeration

HRESULT Clone
(
--- returned arguments ---

IPSWEnumSelectionList **ppenum
)

Returned arguments
ppenum The returned IPSWEnumSelectionList

Note: It is a module's responsibility to ensure that the lifetime of ppenum is 
correctly handled
PS/Workshop V2.1 Developer Guide 109



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Next

Retrieves the next celt items in the enumeration sequence.

If there are fewer than the requested items left in the sequence, this function 
retrieves the remaining elements. The number of elements actually retrieved is 
returned in the pceltFetched argument.

Reset

Resets the enumeration sequence to the beginning.

Skip

Skips over the next specified number of elements in the enumeration sequence.

HRESULT Next
(
--- received arguments ---

ULONG celt, 
--- returned arguments ---

PK_ENTITY_t *rgelt, 
ULONG *pceltFetched 

)

Received arguments
celt The number of elements requested
Returned arguments
rgelt Returned entities
pceltFetched The number of entities actually returned (may be NULL)

HRESULT Reset
(
)

HRESULT Skip
(
--- received arguments ---

ULONG celt 
)

Received arguments
celt The number of elements to skip
110 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.12 IPSWView
This interface is superseded by IPSWView2.

A.13 IPSWView2
Each document open in PS/Workshop has one or more views attached. Each 
IPSWView is associated with an IPSWDoc.

A.13.1 Summary
The following is a summary of the IPSWView interface.

Properties 

Functions 

Note: In the current version of PS/Workshop there is only one IPSWView 
associated with each IPSWDoc.

Property Type Description
ViewMatrix PK_TRANSF_t The view matrix
CurrentOperation pswCurrentOperation The current operation
ViewStyle pswViewStyle The current view style
SelectionFilter pswSelectionFilter The current selection filter
RenderFacetOpts void* The facet rendering options
RenderLineOpts void* The line rendering options
ViewCentre double* The current view centre

Function Description
FitToScreen Resizes the view to fit the part
ResetRenderOptions Resets the render options to their default
ScaleView Scales the view by a given factor
ZoomToEntities Zooms the view to the given entities
RotateView Rotates the view about a given axis
Update Forces an updated (re-render) of the given entities
PS/Workshop V2.1 Developer Guide 111



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
A.13.2 IPSWView2 properties

ViewMatrix

Returns the current view matrix.

Sets the current view matrix.

CurrentOperation

Returns the current PS/Workshop operation.

HRESULT get_ViewMatrix
(
--- returned arguments ---

PK_TRANSF_t *pVal 
)

Returned arguments
pVal The view matrix

HRESULT put_ViewMatrix
(
--- received arguments ---

PK_TRANSF_t newVal 
)

Received arguments
newVal The new view matrix

HRESULT get_CurrentOperation
(
--- returned arguments ---

pswCurrentOperation *pVal 
)

Returned arguments
pVal The current operation
112 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pVal may be one of the following values:

� pswCurrentOperationIdle
� pswCurrentOperationRotate
� pswCurrentOperationZoom
� pswCurrentOperationZoomWindow
� pswCurrentOperationPan

Sets the current PS/Workshop operation.

newVal may be one of the following values:

� pswCurrentOperationIdle
� pswCurrentOperationRotate
� pswCurrentOperationZoom
� pswCurrentOperationZoomWindow
� pswCurrentOperationPan

ViewStyle

Returns the current view style.

HRESULT put_CurrentOperation
(
--- received arguments ---

pswCurrentOperation newVal 
)

Received arguments
newVal The new operation

HRESULT get_ViewStyle
(
--- returned arguments ---

pswViewStyle *pVal 
)

Returned arguments
pVal The view style
PS/Workshop V2.1 Developer Guide 113



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
pVal may be one of:

� pswViewStyleShaded
� pswViewStyleWireframe
� pswViewStyleWireAndSils
� pswViewStyleShadedWireAndSils
� pswViewStyleHidden
� pswViewStyleShadedWireframe

Sets the current view style.

newVal may be one of:

� pswViewStyleShaded
� pswViewStyleWireframe
� pswViewStyleWireAndSils
� pswViewStyleShadedWireAndSils
� pswViewStyleHidden
� pswViewStyleShadedWireframe

SelectionFilter

Returns the current selection filter.

HRESULT put_ViewStyle
(
--- received arguments ---

pswViewStyle newVal 
)

Received arguments
newVal The view style

HRESULT get_SelectionFilter
(
--- returned arguments ---

pswSelectionFilter *pVal 
)

Returned arguments
pVal The selection filter
114 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pVal may be any combination of the following flags:

� pswSelectionFilter_None
� pswSelectionFilter_Edge
� pswSelectionFilter_Face
� pswSelectionFilter_Vertex
� pswSelectionFilter_Body
� pswSelectionFilter_All

Sets the current selection filter.

newVal may be any combination of the following flags:

� pswSelectionFilter_None
� pswSelectionFilter_Edge
� pswSelectionFilter_Face
� pswSelectionFilter_Vertex
� pswSelectionFilter_Body
� pswSelectionFilter_All

RenderFacetOpts

Returns the current facetting options.

HRESULT put_SelectionFilter
(
--- received arguments ---

pswSelectionFilter newVal
)

Received arguments
newVal The selection filter

HRESULT get_RenderFacetOpts
(
--- returned arguments ---

void *pVal 
)

Returned arguments
pVal The facetting options

Note: pVal must to be cast to a PK_TOPOL_facet_mesh_o_t* structure.
PS/Workshop V2.1 Developer Guide 115



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
Sets the current facetting options.

RenderLineOpts

Returns the current line rendering options.

Sets the current line rendering options.

HRESULT put_RenderFacetOpts
(
--- returned arguments ---

void *newVal
)

Returned arguments
newVal The facetting options

Note: newVal must be a PK_TOPOL_facet_mesh_o_t* structure.

HRESULT get_RenderLineOpts
(
--- returned arguments ---

void *pVal 
)

Returned arguments
pVal The line rendering options

Note: pVal must be cast to a PK_TOPOL_render_line_o_t* structure.

HRESULT put_RenderLineOpts
(
--- returned arguments ---

void *newVal 
)

Returned arguments
newVal The line rendering options
116 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ViewCentre

Returns the current view centre

pVal is the current view centre where:
� pVal[0] represents the x component
� pVal[1] represents the y component
� pVal[2] represents the z component

Sets the current view centre

newVal is the current view centre where:
� newVal[0] represents the x component
� newVal[1] represents the y component
� newVal[2] represents the z component

Note: newVal must be a PK_TOPOL_render_line_o_t* structure.

HRESULT get_ViewCentre
(
--- returned arguments ---

double pVal[3] 
)

Returned arguments
pVal The view centre

HRESULT put_ViewCentre
(
--- received arguments ---

double newVal[3] 
)

Received arguments
newVal The view centre
PS/Workshop V2.1 Developer Guide 117



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
A.13.3 IPSWView2 functions

FitToScreen

Recalculates the view to fit all the parts in the document on the screen.

ResetRenderOptions

Resets the render options to their default values.
This function returns full control of the rendering to PS/Workshop.

ScaleView

Scales the view by the given factor.

If factor < 1 then the view zooms out. If factor is > 1 then the view zooms in.

HRESULT FitToScreen
(
)

HRESULT ResetRenderOptions
(
)

HRESULT ScaleView
(
--- received arguments ---

double factor 
)

Received arguments
factor Scale to apply to view

Specific Errors
E_INVALIDARG factor must be > 0
118 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ZoomToEntities

Zooms to the given entities.

The following classes of entities are supported:

� PK_CLASS_assembly
� PK_CLASS_body
� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_point
� PK_CLASS_curve, and all subclasses
� PK_CLASS_surf, and all subclasses

RotateView

Rotates the view about the given axis.

HRESULT ZoomToEntities
(
---received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities to zoom to

Specific Errors
PSWERR_INVALIDCLASS At least one of pkEnts is of the wrong class
PSWERR_NOTANENTITY At least one of pkEnts is not a valid entity

HRESULT RotateView
(
--- received arguments ---

double angle, 
double *axis 

)

PS/Workshop V2.1 Developer Guide 119



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
� axis[0] represents the x component of axis
� axis[1] represents the y component of axis
� axis[2] represents the z component of axis

Update

Forces an update (re-render) of the given entities. 

This function updates the folllowing Parasolid entity classes:

� PK_CLASS_body
� PK_CLASS_assembly
� PK_CLASS_face
� PK_CLASS_edge
� PK_CLASS_vertex
� PK_CLASS_curve, and all subclasses (if in the draw list)
� PK_CLASS_surf, and all subclasses (if in the draw list)
� PK_CLASS_point (if in the draw list)

A.14 IPSWAddIn
Provides the connection/disconnection mechanism for a module. Every 
PS/Workshop module must support this interface.

Received arguments
angle Angle to rotate view in radians
axis Axis to rotate view about

Specific Errors
E_INVALIDARG axis is not a unit vector

HRESULT Update
(
--- received arguments ---

int nEnts, 
PK_ENTITY_t *pkEnts 

)

Received arguments
nEnts The number of entities
pkEnts The entities
120 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.14.1 Summary
The following is a summary of the IPSWAddIn interface.

Functions 

A.14.2 IPSWAddIn functions

OnConnection

This function is called whenever a module is loaded.

The eConnectMode argument determines how the module was loaded. It can 
have one of the following values:

PS/Workshop calls this function on a module when it attempts to load it. If this 
returns an error code then PS/Workshop unloads the module. In the default 
implementation this calls CAddonMain:StartModule. 

Function Description
OnConnection Called when a module is first loaded
OnDisconnection Called when a module is unloaded

HRESULT OnConnection
(
--- received arguments ---

IDispatch *pIPSWApp, 
IDispatch *pIPSWAddIn,
PswConnectMode eConnectMode

)

Received arguments
pIPSWApp The PS/Workshop IDispatch interface
pIPSWAddIn The PS/Workshop IPSWAddIn interface
eConnectMode How the module is loaded

Value Description
pswConnectAtStartUp The module has been loaded at startup 
pswConnectByUser A user has requested this module to be loaded
pswConnectExternally The module has been loaded from an external 

source
PS/Workshop V2.1 Developer Guide 121



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
OnDisconnection

This function is called when the module is disconnected.

The pswDisconnectMode argument determines how the module came to be 
unloaded. It may have the following values:

This function on a module is called immediately before the module is unloaded. 
It is suggested that during this function the module ensures that all references to 
PS/Workshop interfaces are released.

A.15 IPSWEvents
Provides notification of PS/Workshop events to a module

A.15.1 Summary
The following is a summary of the IPSWEvents interface.

Functions 

HRESULT OnDisconnection
(
--- received arguments ---

pswDisconnectMode DisconnectMode
)

Received arguments
DisconnectMode How the module came to be unloaded

Value Description
pswDisconnectAtShutdown The module is being disconnected as a result of 

PS/Workshop shutting down
pswDisconnectByUser The module has been unloaded at the request 

of the user
pswDisconnectExternally The module has been unloaded at the request 

of some external process

Function Descriptoin
OnCommand Called whenever a menu item added by a module is 

selected
OnCommandHelp Called to provide help on a menu item added by a 

module
122 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.15.2 IPSWEvents functions

OnCommand

Called whenever a menu item added by a module is selected, or a file of a 
registered filetype is chosen.

OnCommandUpdateUI Called to update the UI of a menu item added by a 
module

OnDocClose Called whenever a PS/Workshop document is closed
OnDocOpen Called whenever a PS/Workshop document is opened
OnPartChange Called whenever the parts in a document have changed
OnSelectTopols Called whenever a selection event occurs
OnViewClose Called whenever a view is closed
OnViewOpen Called whenever a view is opened

Function Descriptoin

HRESULT OnCommand
(
--- received arguments ---

long CommandID, 
void *lparam 

)

Received arguments
CommandID The ID associated with the command
lparam Extra information relating to the command
PS/Workshop V2.1 Developer Guide 123



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
This event may occur in the following cases:

OnCommandHelp

Called whenever help is requested about a menu item added by a module.
This function is currently not implemented and returns E_NOTIMPL.

OnCommandUpdateUI

Called to update the user interface for a menu item added by a module.

Case Comments
The user chose a menu item 
previously added by the 
module. 

In this case, CommandID is the ID previously 
passed to IPSWApp::AddMenuItem or 
AddMenuItem2. The lparam argument is 
NULL in this instance.

The user has selected a file of 
a registered filetype from 
either the File Open or File 
Save As dialog.

In this case, CommandID is the ID of the 
registered FileOpen or FileSaveAs handler. The 
lparam argument contains the filename to 
open or save, as a LPCSTR.
The module must have already registered a 
custom FileOpen or FileSaveAs handler using 
IPSWApp::RegisterFileOpenFunction or 
RegisterFileSaveAsFunction for this case to be 
handled.

HRESULT OnCommandHelp
(
--- received arguments ---

long hFrameWnd,
long HelpCommandID,
long CommandID

)

HRESULT OnCommandUpdateUI
(
--- received arguments ---

long CommandID,
--- returned arguments --- 

long *CommandFlags, 
BSTR *MenuItemText,
long *BitmapID

)

124 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This function is called by the framework to update the status of user added menu 
items. CommandID is the ID previously passed to IPSWApp::AddMenuItem or 
AddMenuItem2 for a particular menu item. 

You can use CommandFlags to change the status of a menu item. It can take 
any of the following values:

The MenuItemText argument controls the text that is associated with the menu 
item, so that the text seen by the user can be changed on the fly, in conjunction 
with the value of CommandFlags.

OnDocClose

Called whenever a PS/Workshop document is closed.

Received arguments
CommandID The ID associated with the command
Returned arguments
CommandFlags Whether to enable/disable this command 
MenuItemText The text to associate with this menu entry
BitmapID Not used

Value Description
pswCmdUI_Enable Enable the menu item if it is currently disabled.
pswCmdUI_Disable Disable the menu item if it is currently enabled.
pswCmdUI_Checked Place a tick mark next to the menu item.
pswCmdUI_Unchecked Remove the tick mark next to the menu item.
pswCmdUI_ChangeText Use the text specified in MenuItemText as the text 

for the menu item.
pswCmdUI_UseBmp Use the bitmap specified in BitmapID as the bitmap 

associated with the CommandID.

Note: The BitmapID argument is currently ignored.

HRESULT OnDocClose
(
--- received arguments ---

IPSWDoc* pDoc 
)

PS/Workshop V2.1 Developer Guide 125



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
This event only occurs after the associated OnViewClose event.

OnDocOpen

Called whenever a PS/Workshop document is opened.

This event occurs before the associated OnViewOpen event.

OnPartChange

Called whenever the parts in a document change.
This function is called whenever the number of parts in any document change, or 
the parts themselves change. It is not called if any sub-entities of the part are 
modified.

OnSelectTopols

Called whenever a selection event occurs inside PS/Workshop.

This function is called whenever an entity is selected or deselected in any 
document. The selected entities can then be found using the IPSWSelectionList 
interface. 

Received arguments
pDoc The IPSWDoc interface associated with this document

HRESULT OnDocOpen
(
--- received arguments ---

IPSWDoc* pDoc 
)

Received arguments
pDoc The IPSWDoc interface associated with this document

HRESULT OnPartChange
(
)

HRESULT OnSelectTopols
(
)

126 PS/Workshop V2.1 Developer Guide



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OnViewClose

Called whenever the PS/Workshop view is closed.

This function is called before any subsequent call to OnDocClose.

As of PS/Workshop 2.1, pView can be query-interfaced to IPSWView.

OnViewOpen

Called whenever the PS/Workshop view is opened.

This function is called after any call to OnDocOpen.

HRESULT OnViewClose
(
--- received arguments ---

IPSWDoc *pDoc, 
IPSWView *pView 

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view

HRESULT OnViewOpen
(
--- received arguments ---

IPSWDoc *pDoc, 
IPSWView *pView 

)

Received arguments
pDoc The IPSWDoc interface associated with this view
pView The IPSWView interface associated with this view
PS/Workshop V2.1 Developer Guide 127



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Interface Functions
128 PS/Workshop V2.1 Developer Guide



B
BKnown Issues

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This chapter lists known issues with the current version of PS/Workshop.

Modules written for previous versions of PS/Workshop and linked to 
edsps111.lib will need to be recompiled and linked to pskernel.lib to load 
successfully 
Developers of modules for earlier versions of PS/Workshop should note that the 
structure of the new COM template module has been kept as close as possible 
to the original template module.

The default module created by the PS/Workshop AppWizard uses the delayload 
mechanism when it is built. Doing this means that you can successfully build the 
module without having pskernel.dll present in the same directory as the 
module DLL when the module is first created. It does, however, cause a warning 
to be generated when the module is compiled for the first time.
PS/Workshop V2.1 Developer Guide 129



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Known Issues
130 PS/Workshop V2.1 Developer Guide


	Parasolid V13.0
	PS/Workshop V2.1 Developer Guide
	June 2001
	Important Note
	© Copyright 2001 Unigraphics Solutions Inc. All rights reserved


	Trademarks
	Introduction
	1.1 Introduction
	1.2 Installation
	1.3 PS/Workshop SDK directory structure
	1.4 The PS/Workshop module wizard

	A Short Tutorial
	2.1 Introduction
	2.2 Creating a new project
	2.3 Adding a Hollow menu item
	2.4 Adding a handler for the OnCommand event
	2.5 Writing code to perform the hollow

	Using COM in PS/Workshop
	3.1 What is a COM object?
	3.2 Creating a COM object
	3.2.1 Creating a COM object indirectly
	3.2.2 Creating a COM object directly

	3.3 Using COM interfaces
	3.3.1 Calling public methods
	3.3.2 Testing for success or failure

	3.4 Managing the lifetime of COM objects
	3.4.1 Managing interfaces in method arguments
	3.4.2 IUnknown
	QueryInterface
	AddRef
	Release

	3.4.3 ATL smart interface pointers

	3.5 Converting between data-types
	3.5.1 Converting from BSTR to CString
	3.5.2 Creating a BSTR


	Event Handling Within A Module
	4.1 General message handling
	4.2 Handling menu command events

	Module Structure
	5.1 CAddinImpl
	5.2 CXXXApp
	5.2.1 CXXXApp Functions
	InitInstance
	ExitInstance


	5.3 CAddonMain
	5.3.1 Summary
	5.3.2 CAddonMain functions
	CAddonMain
	OnDocClose
	OnDocOpen
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen
	OnCmdMsg
	GetActiveDocument
	StartModule
	OnAppDestroy


	5.4 CAddonDoc
	5.4.1 Summary
	5.4.2 CAddonDoc functions
	CAddonDoc
	OnDocClose
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen
	OnCmdMsg
	GetDocumentInterface
	GetSelectionInterface
	GetDrawInterface
	GetPartInterface
	GetRollbackInterface
	GetActiveView
	GetParts
	OnMyFunction


	5.5 CAddonView
	5.5.1 Summary
	5.5.2 CAddonView functions
	CAddonView
	OnCmdMsg
	GetViewInterface



	The PS/Workshop Interfaces
	Adding a New Menu Item to PS/Workshop
	Registering Handlers for Different Filetypes
	The Draw List
	9.1 Specifying which parts to render
	9.2 Setting drawing options

	Interface Functions
	ActiveDocument
	Documents
	StatusBarText
	Version
	AddMenuItem
	AddMenuItem2
	OpenDocument
	OpenNewDocument
	CloseDocument
	QueryPSWModuleInterface
	RegisterFileOpenFunction
	RegisterFileSaveAsFunction
	Colour
	DocumentTitle
	DrawList
	PartList
	Rollback
	SelectionList
	SaveAsBMP
	SaveAsXGL
	SaveAsWMF
	Update
	_NewEnum
	Count
	Item
	AddItems
	IsEmpty
	IsMember
	RemoveAll
	RemoveItems
	ReplaceItems
	_NewEnum
	Colour
	Count
	Item
	AddItems
	IsEmpty
	IsMember
	RemoveAll
	RemoveItems
	ResetColour
	ResetColour2
	SetColour
	SetColour2
	_NewEnum
	Count
	DrawOptions
	Item
	AddItems
	AddItems2
	IsEmpty
	IsMember
	ModifyItems
	RemoveAll
	RemoveItems
	Update
	Clip
	Colour
	DrawSense
	N_U
	N_V
	Tolerance
	ToleranceColour
	Init
	Reset
	DeletePMark
	MakePMark
	RollbackTo
	Clone
	Next
	Reset
	Skip
	Clone
	Next
	Reset
	Skip
	Clone
	Next
	Reset
	Skip
	ViewMatrix
	CurrentOperation
	ViewStyle
	SelectionFilter
	RenderFacetOpts
	RenderLineOpts
	ViewCentre
	FitToScreen
	ResetRenderOptions
	ScaleView
	ZoomToEntities
	RotateView
	Update
	OnConnection
	OnDisconnection
	OnCommand
	OnCommandHelp
	OnCommandUpdateUI
	OnDocClose
	OnDocOpen
	OnPartChange
	OnSelectTopols
	OnViewClose
	OnViewOpen

	Known Issues

