
Parasolid V13.0

Kernel Interface Driver Manual

June 2001

Important Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc.

© Copyright 2001 Unigraphics Solutions Inc. All rights reserved
Restricted Rights Legend: This commercial computer software and related documentation are
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable.
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the
terms of the applicable license agreement. Any copying of this documentation, except as permitted
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

Cambridge CB2 1DP
UK

Tel: +44 (0)1223 371555
Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com

Trademarks
Parasolid is a trademark of Unigraphics Solutions Inc.
HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.
IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.

OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual C/C++ and Window NT are registered trademarks of Microsoft Corp.
Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.

ATable of Contents

. .
 1 Kernel Interface Driver (KID) – an Overview 9
1.1 Introduction 9

1.1.1 LISP 10
1.1.2 Facilities within KID 10

1.2 Concepts 11
1.2.1 Object-oriented KID 11

1.3 Starting/terminating a KID session 13

 2 LISP in KID . . 15
2.1 Introduction 15

2.1.1 LISP evaluation 15
2.1.2 Atomic Symbols 16

2.2 List operators 17
2.2.1 CAR and CDR 17
2.2.2 CONS 19
2.2.3 LIST and APPEND 19

2.3 Predicates 20
2.4 Conditionals 21
2.5 User-defined functions 22
2.6 Recursion vs. iteration 23

2.6.1 Recursion 23
2.6.2 Iteration 23

2.7 Special features of Parasolid LISP 24
2.8 Object oriented LISP 25

 3 Object-Oriented KID . . . 27
3.1 Object oriented programming 27

3.1.1 Objects and message passing 27
3.1.2 Parasolid PK functions and KI routines 27

3.2 KID journal file 28
3.3 Starting and stopping the kernel 28
3.4 Parasolid journal file 29
3.5 Rollback during a modeling session 30
3.6 Defining KID objects 31
3.7 Combining tags of KID objects 32
3.8 Receive and transmit 32
3.9 Help 33
Kernel Interface Driver Manual 3

. .

3.10 Options 33

 4 Calling the KI/PK Using KID (FLICK) 39
4.1 Introduction 39
4.2 Functional low-level interface to the C-kernel (FLICK) 39
4.3 Calling KI routines 40
4.4 Calling PK functions 41
4.5 Using the quote (’) 44
4.6 KI ifail checking 45
4.7 PK error checking 46
4.8 Timing 47

 5 Creation of Primitives 49
5.1 Introduction 49

5.1.1 Solid Primitives 49
5.2 Additional Primitive Options 50

5.2.1 p_pyramid 50
5.2.2 p_block, p_cone and p_cylinder 50
5.2.3 p_sphere and p_torus 50
5.2.4 Profiling 50

5.3 Transformation Primitives 53
5.3.1 p_equal_scaling 54
5.3.2 p_reflection 54
5.3.3 p_rotation 54
5.3.4 p_translation 54
5.3.5 p_general_transform 54

5.4 Assemblies and Instances 55

 6 Operations on Bodies, Curves, Surfaces, etc. 57
6.1 Introduction 57
6.2 Booleans 57

6.2.1 Multiple bodies 58
6.2.2 Sectioning primitives 58
6.2.3 Operations on the single class 58

6.3 Sewing 59
6.4 Transforming bodies 59
6.5 Blends 60

6.5.1 Creating unfixed blends 61
6.5.2 Checking, enquiring and removing unfixed blends, and picking blends 65
6.5.3 Fixing blends 65
6.5.4 Extracting blend information from a blended body 66
6.5.5 Creating a cliff-edge blend 66
4 Kernel Interface Driver Manual

. .

6.5.6 Defining and fixing a blend in a single operation 67
6.5.7 Blending on vertices 67

6.6 Sweeping and swinging 67
6.6.1 Sweeping faces 69

6.7 Hollowing, offsetting and imprinting 69
6.7.1 Hollowing 69
6.7.2 Offsetting 70
6.7.3 Imprinting 71

 7 Local Operation Functions 73
7.1 Introduction 73

 8 Miscellaneous Useful Functions 77
8.1 Replication of objects within the modeller 77
8.2 Renaming a modeller item 78
8.3 Selecting an entity using its identifier 78
8.4 Magnifying, reflecting and mirroring a body 79
8.5 Mass properties 79
8.6 KI/PK Functions 80

 9 Enquiries . 81
9.1 Introduction 81
9.2 Enquiring/setting the tag property 82
9.3 Using enquire to construct complex functions 83
9.4 Accessing the KI routine IDCOEN for topological entities 84
9.5 Enquiring coordinates of box enclosing single item 84
9.6 Enquiring on a supplied point 85

 10 Attributes in KID . 87
10.1 Using attributes 87
10.2 Constructing attributes 87
10.3 Defining attribute structures 88
10.4 Reading from attributes 89
10.5 Writing to attributes 89
10.6 Controlling attribute names 90

 11 KID Graphics: Overview . 91
11.1 Introduction 91
11.2 The Class Structure 92
11.3 Output Devices 92
Kernel Interface Driver Manual 5

. .

 12 Viewing Environment and Definition 95

12.1 Introduction 95
12.2 Windowing 96

12.2.1Using the cursor for redefining the window 96
12.3 View manipulation 98
12.4 Selecting a view 98
12.5 Clearing the screen and drawing the current view 99
12.6 Use of the drawing list 100
12.7 Enquiry 100

 13 KID Rendering . 101
13.1 Introduction 101

13.1.1Wire frame pictures 101
13.1.2Hidden line pictures 102
13.1.3Shaded pictures 102
13.1.4Faceted pictures 103

13.2 Rendering options 103

 14 Picking . 129
14.1 Introduction 129
14.2 Picking from the screen 129

14.2.1Pick with one argument 130
14.2.2Pick with two arguments 131

14.3 Picking directly from other objects 131
14.4 Picking vector points 134
14.5 Picking an entity from an assembly 135

 15 Fault Reporting in KID 137
15.1 Introduction 137
15.2 Fault types 137
15.3 Fault isolation and simplification 137

 A KID Class Structure . 139
A.1 Introduction 139

A.1.1 Modeller substructure 139
A.1.2 Entity substructure 141
A.1.3 Primitive substructure 146
A.1.4 Graphics substructure 148

 B Parasolid LISP Functions 151
6 Kernel Interface Driver Manual

. .

B.1 Introduction 151
B.2 Arithmetic operators 151
B.3 Environment 151
B.4 Monadic operators 152
B.5 List operators 152
B.6 Evaluation 153
B.7 I/O operators 153
B.8 Time operators 154
B.9 System functions 154
B.10System variables 155

 C Error Codes in Parasolid LISP 157

 D List of Parasolid LISP Functions 159
D.1 PARASOLID LISP functions 159
D.2 PARASOLID LISP function descriptions 164

 E KID Examples . 173
E.1 Introduction 173
E.2 Example 1 173
E.3 Example 2 173
E.4 Example 3 175
E.5 Example 4 175
E.6 Example 5 177

 F Machine Dependency in KID 179
F.1 Introduction 179
F.2 open_device and close_device 179
F.3 Which key for pick? 179
F.4 KID interrupts 180

Index . 181
Kernel Interface Driver Manual 7

. .
8 Kernel Interface Driver Manual

1

. .

1Kernel Interface Driver
(KID) – an Overview
1.1 Introduction

Document purpose
This manual, for the Kernel Interface Driver (KID), is for programmers who wish
to use KID to drive PARASOLID. It assumes knowledge of the kernel interface
(KI) and the PK interface, LISP, and modeling in PARASOLID, though some
basic elements are explained in the following chapters.

Notation used in this manual
Throughout this manual, the notation --> is used in examples to indicate when
information is returned by a call.

What is KID?
KID is recommended as an introduction to Parasolid which enables you to
quickly create solid objects, manipulate and display them.

� KID is a stand-alone program, that accesses the Parasolid KI / PK
independently of any application program, incorporating:
� the Parasolid library;
� a basic graphics library;
� its own Frustrum for file and memory management;
� a command-line user interface.

� The KID user interface is a LISP interpreter that allows the Parasolid KI / PK
to be called directly and interactively.
A command is a complete LISP expression, enclosed in brackets, which is
read in and evaluated by the driver.
Kernel Interface Driver Manual 9

. .Kernel Interface Driver (KID) – an Overview
The LISP interpreter is implemented in C and is included within the supplied
executable image of KID.

� The user-interface has two levels, which can be combined:
� object-oriented KID
� a lower level, more direct interface to the KI / PK called FLICK

� As quite complex programs can be built up in LISP, without the need for a
compiling/relinking cycle, KID is an ideal tool for learning about Parasolid
and for the prototyping of ideas before they are coded into an application.

� KID is used by customers and internally for investigating and reporting faults
in Parasolid.

1.1.1 LISP

What is LISP?
The programming language LISP, or “LISt Processing language”, is one of the
oldest programming languages, dating from 1960. Though primarily intended for
symbolic processing with applications in artificial intelligence, algebraic
computation and theorem proving, in KID it is used as a general purpose
interface.

LISP is highly interactive and is thought of as an interpreter as it evaluates
symbolic expressions, or s-expressions, which you pass to it. You do not need to
compile or link LISP programs.
The language supports a range of programming styles from “Fortran with
brackets” to functional programming. Modern implementations are very complex
and different from one another.

PARASOLID LISP is provided with a set of standard functions.

1.1.2 Facilities within KID

Graphics
KID is supplied with its own graphical system and device drivers. Functions are
available to render items from the kernel in a number of ways. Picking from the
screen is used extensively as a method of selection.

Rollback
It is possible to roll back the kernel via KID functions. A rollmark can be set at the
beginning of each command or sequence of commands. If a command fails to
complete successfully, the kernel can then be rolled back to the state it was when
the rollmark was set.
10 Kernel Interface Driver Manual

. .Concepts
It is not possible to roll back the driver. After a kernel rollback, the driver and the
kernel may be inconsistent.

Help
The on-line help often provides a convenient way of finding out about objects in
KID. It provides information about an object and its properties.

1.2 Concepts

1.2.1 Object-oriented KID
In any object oriented programming environment, an object is used to represent
a collection of data and functions. An object can be used to represent a real thing
or an abstract idea.

Objects and classes
Objects in KID are arranged in a pre-defined class structure and an object can
own other sets of objects. An owning object is referred to as a class. The objects
in a class represent the same kind of component, e.g. bodies, faces.

Figure 1–1 Class tree structure (objects owning objects)

All the information concerning an object, including the functions necessary to
manipulate it, are kept within the object. PARASOLID LISP has been extended
by the inclusion of object oriented functions and these are used extensively
within KID.

Item
An item exists as a tagged (i.e. uniquely numbered) entity in the kernel. It has a
tag which may or may not be known about by KID.

> (define f1 face) -- define f1 as a member of the face class
> (f1 pick) -- pick is a function inherited by the object face

and enables a cursor pick from a model drawing.

body face

entity

topology geometry

surface curve pointedge
Kernel Interface Driver Manual 11

. .Kernel Interface Driver (KID) – an Overview
Objects are used to refer to an item in the kernel. Only an object in a class below
the entity class may refer to an item in this way. An object may refer to more than
one item.

One of the main tasks of KID is to maintain the correspondence between items
and objects.

Primitives
Before an item can be created by the kernel it is necessary to supply data to
define it. This data is stored in one of the classes below the primitive class. The
data may simply be a set of geometric data (point, direction, radius, etc.) or it may
also include the names of existing objects.
Most primitive classes have a corresponding create function, their names are
usually the name of the type of entity which is created preceded by p_.

Tags
The tag of an object is one of its properties. This property can be one of the
following:

� nil – the object does not have an associated item;
� an atom – the object refers to a single item;
� a list of tags which refer to a set of items. To maintain version independence,

the set is not ordered and it is not possible to use individual items from the
set. For example, it is possible to define a face object which consists of all the
faces in a body, and to move all the faces with a single function call.

All communication with the kernel interface is via tags, so you use an object
which refers to an item to perform a kernel function on the item.

Dead Tags
Objects which refer to items which have been deleted, for example after a
rollback, contain dead tags. Some caution should be exercised in this case, and
“undefine” used to remove the dead object. It is possible that a dead tag may be
unintentionally passed to the kernel. This is always trapped by the kernel and an
ifail error message returned.

Errors
Missing mandatory parameters give an error to the user.
To rectify you should repeat the KID command after first setting the properly
named parameter on the object. For example:
12 Kernel Interface Driver Manual

. .Starting/terminating a KID session
Function arguments
The majority of object functions use predefined properties of the object as their
arguments. Some functions use both predefined properties and a single
argument given at the time of the call, for example:

1.3 Starting/terminating a KID session

Starting
To run the KID program, for example, on VMS platform, type:
$ run PARASOLID:kid.exe
where PARASOLID is a logical name defining the pathname to kid.exe.

When the program is ready the > prompt is shown:

For further information on running KID on all supported platforms, see Chapter 5,
“Using Parasolid”, of the Parasolid Release Notes.

Terminating
To terminate a KID session type:
> (quit)

> (define b0 p_cone)
> (b0 lrad 10; height 20; create)

--> “b0 should first have parameter urad specified”
...(followed by lisp error 42)

> (b0 urad 2; create)

> (<object> transmit ‘<file_name>)

restore: finished in 2.149999999999s
*** KID version >v60<
switch to journal file kid.jou
>

Kernel Interface Driver Manual 13

. .Kernel Interface Driver (KID) – an Overview
14 Kernel Interface Driver Manual

2
2LISP in KID

. .
2.1 Introduction
As previously discussed in the opening chapter we have assumed that users of
KID have knowledge of LISP, but for those who are a little rusty or unsure of the
concepts used, the following section is designed to get you started.

2.1.1 LISP evaluation
You should think of LISP as an interpreter. It evaluates or attempts to evaluate
messages which you pass to it. The messages which you pass are called
symbolic expressions (s-expressions).

S-expressions
In the following examples of s-expressions notice that numbers evaluate to
themselves:

S-expressions are composed of lists and atoms.

Atoms
Atoms are entities which LISP treats as whole items, i.e. they cannot be broken
down further. Examples are:

� integers
� reals, e.g. 3.1417
� strings, e.g. a; b; plus. Strings are commonly used as either variable or

function names.

Lists
Lists are chains of elements bounded by parentheses, where elements are either
atoms or lists themselves. For example:

> (times 3 4)
12
> 3.1417
3.1417
> (times 3 (plus 2 2))
12
Kernel Interface Driver Manual 15

. .LISP in KID
List evaluation
When evaluating lists LISP applies the following criteria:

� the first element of the list is treated as a function or operator name, and the
subsequent elements are arguments, for example:

� as lists can be embedded, the innermost lists are evaluated first, and their
values are taken as arguments in the next innermost list, etc. For example:

Quotation
S-expressions which are preceded by a quote (’) are NOT evaluated, for
example:

2.1.2 Atomic Symbols

SETQ
As previously discussed, strings can be used as variables. They can be bound to
values using the setq operator, for example:

(3 4 5)
(a d f)
(plus 2 (times 4 3))
() --- empty list

> (plus 2 4)

> (times 6 (plus 1 (plus 2 2)))
30

> ’ (3 4)
(3 4)
> (quote (3 4))--- is equivalent to the above
(3 4)
> ’a
a

16 Kernel Interface Driver Manual

. .List operators
A side effect of these type of operations is that the complete s-expression always
evaluates to a result.
The following examples are equivalent forms:

Predefined symbol-strings
A number of symbol-strings are predefined by the system, for example:

� plus, times, add1 (operator names)
� nil (the empty list, or logical false)
� t (the logical true)

2.2 List operators
Symbolic operations on lists consist primarily of taking lists apart and building
them up. LISP provides two basic functions for taking lists apart, these are car
and cdr. Both are functions of one argument, which should be a list, and they
always cause their argument to be evaluated.

2.2.1 CAR and CDR

car
car returns the first element of this list, for example:

> (setq a 3)
3
> a --- ‘a’ now evaluates to 3
3
> (setq a (add1 a))
4
> a
4

> (setq a 2)
> (set ’a 2)
> (set (quote a) 2)

> (car ’(a b c))
a

Kernel Interface Driver Manual 17

. .LISP in KID
cdr
cdr returns the list with its first element missing, for example:

car and cdr are considered non-destructive as they do not actually change the
lists on which they operate, for example:

Embedded car and cdr calls
car and cdr can be embedded in a single call, for example:

Code containing long strings of cars and cdrs is hard to follow. Alternatively, the
same calls can be made by the single function that corresponds to the sequence
of calls used. For example, the previous examples would use these single calls
to achieve the same results:

> (cdr ’(a b c))
(b c)

> (setq x ’(a b c))
(a b c)
> x
(a b c)
> (car x)
a
> x
(a b c)
> (cdr x)
(b c)
> x
(a b c)

> (cdr (car ’((a b c) (d e f)))
(b c)
> (car (cdr ’((a b c) (d e f)))
(d e f)
> (car (cdr (car (cdr ’((a b c) (d e f))))))
e

> (cdar ’((a b c) (d e f)))
(b c)
> (cadr ’((a b c) (d e f)))
(d e f)
> (cadadr ’((a b c) (d e f)))
e

18 Kernel Interface Driver Manual

. .List operators
element
The function element is a shorthand for embedded car and cdr calls, for
example, in the following example element returns the third element of the
given list:

2.2.2 CONS
Just as car and cdr take lists apart, cons builds lists up. cons is a function of
two arguments where the second argument should always evaluate to a list.

cons evaluates both of its arguments, and then returns as its value the list
obtained by taking the second argument and placing the first one in front of it, for
example:

cons can be considered to be the inverse function of car and cdr, as cons
always produces a list whose car is the first argument to cons, and whose cdr
is the second argument.

Like car and cdr, cons is non-destructive.

Dotted pairs
If the second argument to cons is an atom then the result is a dotted pair rather
than a list. In most cases this is not a desirable result and the use of list would
produce preferable results. However, the syntax for the input of PK option
structures requires the use of dotted pairs for which cons should be used. For
example:

2.2.3 LIST and APPEND
cons can be used to build up complicated s-expressions, for example, to create
the lists (1 2 3) and (a (b c) d), using cons we would:

> (setq x ’(1 4 6 7))
(1 4 6 7)
> (element 3 x)
6

> (cons ’a ’(b c))
(a b c)

(cons 'a 'b) -> (a . b)
(cons 'a '(b c)) -> (a b c)
(cons '(a b) 'c) -> ((a b) . c)
(list '(a b) 'c) -> ((a b) c)
Kernel Interface Driver Manual 19

. .LISP in KID
As this is obviously cumbersome, the list and append functions are simpler
ways to build new lists.

list
list takes any number of arguments, evaluates them, and builds a new list
containing each value as an element. For example:

append
append takes two arguments, which should both evaluate to lists, and creates a
new list by concatenating the given lists. For example:

append can also produce dotted pairs:

2.3 Predicates
A predicate is a symbolic expression which evaluates to true (t) or false (nil),
i.e. it is a test.

Logical operators
The following logical operators are defined: not, and, or.

> (cons ’1 (cons ’2 (cons ’3 nil)))
(1 2 3)
> (cons ’a (cons (cons ’b (cons ’c nil)) (cons ’d nil)))
(a (b c) d)

> (list ’1 ’2 ’3)
(1 2 3)
> (list ’a ’(b c) ’d)
(a (b c) d)

> (append ’(a b) ’(c d))
(a b c d)

(append '(a b) 'c) -> (a b . c)
20 Kernel Interface Driver Manual

. .Conditionals
atom
atom determines whether or not its argument is an atom, for example:

listp
listp determines whether something is a list. For example:

2.4 Conditionals
Predicates can be used to make choices, but to do this the equivalent of a
conditional branch is needed. For this the cond (for conditional) function is
provided. cond is similar to the “if; then; and else” statements.

A cond s-expression can have any number of arguments (clauses), which
consist of a series of expressions. The first element of a cond clause is treated
as a condition to be tested for; the rest consists of things to do should the
condition prevail.

meaning:

> (atom ’a)
t
> (atom ’(a b c))
nil

> (listp ’a)
nil
> (listp ’(a b c))
t

> (cond
(predicate1 action1a action1b action1c ...)
(predicate2 action2a action2b action2c ...)
.
.
(t default_action1 default_action2 ...)

)

if
predicate1 is true, then evaluate action1a,
action1b, etc. in sequence

else if
predicate2 is true, then evaluate action2a ...
.
.

else
evaluate default_action1, ...
Kernel Interface Driver Manual 21

. .LISP in KID
A cond clause is only fully evaluated providing that the first element of the clause
evaluates to true t.

For example, if you want to be sure that something is a list before you take its
car, do:

This previous example is a cond of one clause, the s-expression
((listp x) (car x)). Where the first element of the clause is (listp x)
which is the condition of the clause. It is only when this evaluates to true that
LISP evaluates the rest of the clause, the expression (car x). For example:

Like other LISP functions, cond always returns a value. In the previous example,
when the test in the cond clause evaluates to true, LISP evaluates the next
expression, whilst returning the value of that expression as the value of cond.
When the test failed, the cond returned nil.

2.5 User-defined functions
A LISP user can create functions using the function defun (define function).

defun
defun takes as its arguments the name of the function to be defined, a list of
formal parameters (literal atoms), and some bodies of code (s-expressions).
defun does not evaluate any of these arguments, it associates, for future
reference, the formal parameter list and bodies of code with the given function
name.

For example, to create the simple function addthree:

> (cond ((listp x) (car x)))

> (setq x ’(a b c))
(a b c)
> (cond ((listp x) (car x)))
a
> (setq x ’y)
y
> (cond ((listp x) (car x)))
nil

> (defun addthree (x) (plus x 3))
addthree
> (addthree 4)
7

22 Kernel Interface Driver Manual

. .Recursion vs. iteration
More generally, the syntax of a call to defun would look like:

2.6 Recursion vs. iteration
At times we want to repeat an operation an indefinite number of times, each time
with different inputs. This can be achieved through the use of iteration or
recursion.

2.6.1 Recursion
By using recursion we can accomplish the equivalent of indefinite repetition; a
function is said to be recursive if it refers to itself in its definition. It is necessary
to make sure that the function checks first for a termination condition, to avoid an
infinite loop. For example:

2.6.2 Iteration
In iterative code, indefinite repetition is designated by explicit instructions to do
something repeatedly. In LISP there are several functions that enable you to
write an explicit loop

mapc
mapc is a “LISP-like” way of doing an iteration, in which it takes two arguments;
the first being a list and the second a function. For example:

> (defun function_name (param1 param2 ... paramn)
(... s-expression1 ...)
(... s-expression2 ...
(... s-expression2 ...)
.
.

)

> (defun fac (n)
(cond

((eq n 0) 1)
(t (times n (fac (sub1 n))))

)
)

fac
> (fac 4)
24

> (mapc list_name function_name)
Kernel Interface Driver Manual 23

. .LISP in KID
mapc maps each element of list_name by applying function_name (which
must be a single argument) to it, for example:

2.7 Special features of Parasolid LISP
Parasolid LISP provides a more extensive set of LISP facilities than those which
are generally found in other LISP dialects, important points worth noting are
listed below:

� atomic types include integer, real, string, and function
� arithmetic operations – plus, difference, times, quotient, equal,

greaterp, lessp are overloaded
For example, plus works with character strings as well as reals.

� the input token reader:
� regards underscore _ as part of a symbol, rather than minus -
� recognizes strings in double quotes “....” as quoted atoms
� recognizes double hyphen, --, as beginning a comment

� HELP allows retrieval of system and user information
� LOAD permits execution of journal files or separately developed code
� variables which are not defined, and properties which are not available

default to UNDEFINED (note that UNDEFINED has the value true for the
purposes of conditionals etc.)

� system functions may not be redefined and can only be handed to other
functions by quoting, e.g. eval and plus in:

� CAR, CDR on nil or an atom are not permissible.
� COND raises an error if no true condition is encountered.

Quick reference summary
For a quick reference table summary of the functions available in PARASOLID
LISP, see Appendix B, “Parasolid LISP Functions”.

Error codes
The error codes in PARASOLID LISP are given in Appendix D, “List of Parasolid
LISP Functions”.

> (mapc ’(2 5 7) add1)
(3 6 8)

(apply ’eval (list plus 1 1))
24 Kernel Interface Driver Manual

. .Object oriented LISP
2.8 Object oriented LISP
Parasolid LISP has been extended by the inclusion of object-oriented functions
and these are used extensively within KID.

Object-oriented expressions have the form:

The functions listed first are extensions to functional LISP rather than object
oriented themselves:
� define – creates objects within structures.

� undefine – deletes an object (and any of its subclasses) whether or not it
has been previously defined. The syntax is shown below; the argument can
be one object or many, separated by spaces:

� redefine – redefines an object as another class.
Object oriented LISP provides many more useful functions to add to those
described for standard LISP. Below is a summary of such functions which are
properties of the universe class. Try using (universe help _<name_>) for more
information.

� help – returns help about the object.

� detach – detaches an object from its owning class or parent.
� attach – attaches an object to a new class.
� is – returns the owning class of an object. If an argument is given it must be

the name of a class and the function returns the subclass of the one given
which leads to the object in the class structure, e.g.

(object function argument1 argument2 ...)

> (define <object> <class>)

> (undefine <objects>)

> (fred help [property]) --> useful information
Kernel Interface Driver Manual 25

. .LISP in KID
� superclass – returns the owning class of an object
� subclass – returns the objects owned by the given class
� sibling – returns all objects in the same owning class as the given object
� supertree – returns the direct ancestors of the object, e.g.

� subtree – returns the descendants of a given object
� the symbol minus - removes a property from an object. If the property is not

found, this message is not passed to the owning object.

� defun – defines a function

The following object functions are used internally in KID and need not concern
the user. They are reserved words and should not be overwritten.

> (define limb fred) --> limb
> (define left_leg limb) --> left_leg
> (define right_leg limb) --> right_leg
> (fred is) --> man
> (left_leg is) --> limb
> (left_leg is man) --> fred
> (left_leg is fred) --> limb

> (left_leg supertree) --> (left_leg limb fred man universe)

> (fred age 33) --> 33
> (fred age) --> 33
> (fred - age) --> t
> (fred age) --> undefined

PROPERTY FUNCTIONP INHERIT SYSTEM SUBJECT LAZY GUARD LISTENER
UNGUARD OWN OWNER RESUME ABANDON
26 Kernel Interface Driver Manual

3
3Object-Oriented KID

. .
3.1 Object oriented programming
In any object oriented programming environment, an object is used to represent
a collection of data and functions. An object can be used to represent a real thing
or an abstract idea.
All the information concerning an object, including the functions necessary to
manipulate it, are kept within the object. The principles of object orientated
programming have been exploited in many languages, PARASOLID LISP has
been extended by the inclusion of object oriented functions and these are used
extensively within KID.

3.1.1 Objects and message passing
Objects are LISP entities. They consist of some data and a set of operations. The
nature of an object’s operations depends on the nature of the component it
represents. An object representing data structures might store and retrieve
information, an object representing a solid body might answer enquiries about its
relationships to its component faces and edges, or might perform operations on
itself to modify its shape or position in space.

In KID objects are arranged in a predefined hierarchical class structure, see
Appendix A, “KID Class Structure”.

A message is a request for an object to carry out one of its operations, it specifies
which operation is desired, but not how that operation is carried out. The object
to which the message was sent determines how that operation should be carried
out. A crucial property of messages is that they are the only way to invoke an
object’s operations.
Operations in KID are generally carried out by passing to the command-line
interface messages of the following form:

3.1.2 Parasolid PK functions and KI routines
Many LISP functions and object operations call a Parasolid PK Function or KI
Routine. This provides a convenient, version-independent method of using

(object function argument1 argument2 ...)
(object property argument)
Kernel Interface Driver Manual 27

. .Object-Oriented KID
Parasolid in KID. If timing data is being output (the default action), the name of
the function or routine is also output.

� As the Parasolid PK Interface is developed, many operations are being
changed to use the PK function equivalent of the KI routine they previously
called, but this change is transparent to the user.

3.2 KID journal file
KID opens a journal file with the name kid.jou and journals all KID commands
in this file, which can be renamed before another session is started. It should be
possible to reproduce the original operations by loading this file in a subsequent
KID session. If the file extension is changed to .lsp then it is not necessary to
specify it in the argument to load.

When a graphical pick is made with the cursor, a point and a direction are
recorded. These vectors are written to the journal file and are used when
replaying the journal file so no user interaction is needed.

3.3 Starting and stopping the kernel
The kernel is started and stopped using functions of the object modeller, which
are pre-defined within the KID class structure.
In the following example, KID is instructed to perform the function start (which
requires no arguments) on the object modeller. This has the effect of calling the
Parasolid KI routine STAMOD.

Normally the start function should be called before doing anything else.

start function

and to stop the modeller:

> (load "bug_27.jou") -- file is bug_27.jou
> (load ’bug_27) -- file is bug_27.lsp
> (load "bug_27" ’reflect) -- commands used are shown
> (load ’bug_27 ’verify) -- commands and returns are shown

Object Function
modeller start, stop

> (modeller start)
28 Kernel Interface Driver Manual

. .Parasolid journal file
stop function

3.4 Parasolid journal file
When the kernel is started using (modeller start), a Parasolid journal file is
opened, with the default name kid.jnl_txt. This records all the Parasolid PK
functions and KI routines called in a KID session, with their received and returned
arguments.

The journal file is useful if unexpected errors occur, as it can be inspected to see
what functions have been called and when the error occurred.
All GO (Graphical Output) functions are now logged in the journal file. It should
be noted that this:

� generates very large files
� increases the KID session elapsed time

Therefore, it is recommended that Parasolid journalling is turned off unless it is
required in a particular modeling session.

Journalling options available before (modeller
start)

Journalling options available after (modeller
start), if journalling is enabled

> (modeller stop)

> (option journal t) -- enables journalling (default)
> (option journal_file "f1_b0") -- enables journalling, using

this journal file
> (option journal nil) -- disables journalling
> (option journal) --> returns whether or not a

journal is being kept
> (option journal_file) --> returns the journal file name

> (option journal t) -- toggles journalling on
> (option journal nil) -- toggles journalling off
> (option journal) --> returns whether or not a

journal is being kept
> (option journal_file) --> returns the journal file name
Kernel Interface Driver Manual 29

. .Object-Oriented KID
3.5 Rollback during a modeling session
The function mark provides the means to set marker points in the modeling
session, to which it is possible to:

� roll back using roll, thereby undoing everything performed since the last mark
was set

� roll forward, after you have previously rolled back, to retrace your steps
between operations

mark

roll

When setting a mark you can specify a name for it, and then you can roll to that
specifically named mark (or a system defined name, e.g. mark6).

Live KID objects can be rolled back in synchrony with the kernel. Define body,
face, edge to be types of KID objects you want managed as follows:

No KID object is created or undefined during a rollback, but those objects in the
defined roll_class have their tag values updated.
Graphics is kept in step by honoring the current tag values of the objects it is
being asked to display.

Only the kernel (without affecting KID objects) is rolled backward/forward,
therefore, when a rollback is to a state before the creation of a body in the kernel,
KID still acknowledges its existence, while the kernel does not – an error results
if any modeling operation referring to such a body is attempted. Conversely if a
kernel item has been deleted since the rollmark was set and its corresponding
KID object undefined, after a rollback the kernel acknowledges the item’s
existence, but KID does not.

> (modeller mark)
-- generates a mark name, e.g. mark5, mark6, etc.

> (modeller roll) -- returns to the most recent mark)

> (modeller mark ’start_here)

> (modeller roll ’start_here)

> (modeller roll_class ’(body face edge))
30 Kernel Interface Driver Manual

. .Defining KID objects
3.6 Defining KID objects

define
In LISP an identifier has a value given it by setq or defun. In object oriented
LISP a special function, defun, is used to create an object which returns the
identifier of the object.

In the above example, no Parasolid entity has been created, only a KID entity.

undefine
To undefine a previously defined KID object:

redefine
To redefine a previously defined KID object as another class:

Object Function
modeller mark, roll

> (modeller mark)
> (define b0 p_block)
> (b0 x 10; y 20; z 30; create)
> (b0 is) --> returns body
> (modeller roll) --> rolls back the kernel
> (b0 is) --> returns body
> (b0 enquire) --> returns an error from the kernel

> (define b0 body) -- defines a KID object with the ‘b0’
which belongs to the class ‘body’

> (undefine b0) -- undefines the KID object ‘b0’

> (redefine b0 assembly) -- redefines the KID object ‘b0’ in
the class ‘assembly’
Kernel Interface Driver Manual 31

. .Object-Oriented KID
3.7 Combining tags of KID objects

include, remove
The function include combines the tags contained in the specified KID objects,
so that the KID object refers to more Parasolid entities. The function remove
removes the specified entities from a KID object. The KID objects must be of the
same type.

3.8 Receive and transmit

receive, transmit and state functions
The part class and its subclasses, assembly and body, can be received and
transmitted. Text files are used unless changed by the appropriate option setting.

Object Function
entity include, remove

> (e0 tag)
(46 50 54)
> (e1 tag)
(83 80)
> (e0 include e1)
(83 80 46 50 54)
> (e0 remove e1)
(46 50 54)

Object Function
part receive, transmit

> (define b0 body) -- the object must be defined before
-- before the function can be used

> (define b1 body)
> (b0 receive "b0") -- receives the file b0.xmt_txt
> (b1 receive "flt4453.xmt") -- receives the file flt4453.xmt

-- the extension must be given for .xmt files
> (b0 transmit "b0") -- transmits the object to the file

-- b0.xmt_txt,overwriting original version
> (b0 transmit "file1") -- transmit body to new file
> (define pump body)
> (pump receive "p9423") -- receives an existing body
32 Kernel Interface Driver Manual

. .Help
Both the receive and transmit functions take a single argument, the key of
the relevant part.

3.9 Help

help function
help returns useful information about an object and its functions.

3.10 Options
The option class contains functions which control the interface to the kernel.
These functions:

� affect the options when the modeller is started;
� change them (if it can) while the modeller is running or store them until they

can be changed.
The current setting of any option may be enquired by calling the function without
any arguments. If the option has not been set then the default value is returned.
Text files are the default for part files and binary files for snapshots. The use of
these options is shown below.

Object Function
modeller help

> (modeller help resabs) --> linear resolution in the modeller
> (body help) --> list of valid messages and descriptions
> (b0 help) --> list of valid messages and descriptions
> (p_cone help create)

--> create function properties for primitive p_cone
> (face help rmfaso)

--> function rmfaso of object face and arguments
> (b1 help transmit)

--> how to use transmit function for body b1
Kernel Interface Driver Manual 33

. .Object-Oriented KID
Options for receive and transmit
Part receive and transmit use the values in the appropriate flags:

These are initialized in (modeller start) to the global value set using (option
receive) and (option transmit):

Option check for local operation
When a local operation is performed, there are sometimes a number of possible
solutions. When the option check is set to t, each solution is reviewed and
checked in the resolution of ambiguous cases. If not set, the first solution is
picked.

Object Function
option bb, bb_user, bspline_io, bspline_geometry, bspline_splitting, check,

continuity_checking, data_checking, enquire, get_snapshot, journal,
journal_file, logging, logging_size, logging_number, logging_forward,
parameter_checking, receive, rec_user, save_snapshot,
self_checking, transmit, user_field
pk_session_tolerance, pk_session_receive, pk_session_transmit,
pk_session_local_checking

> (option journal "f1_b0") -- if this is done before starting,
 the kernel will start with this journal file
> (option journal)

--> returns whether or not a journal is being kept
> (option journal_file) --> returns the journal file name
> (option logging [nil | ’ki | ’pk | +ve | -ve)

-- switch off/on logging with required options set
> (option enquire) --> <list of current settings>
> (option check t)

-- switch on local checking, this is the default setting

(option help receive) --> information
(option receive ’binary) -- binary receive
(option transmit ’text) -- text transmit, default setting
(option transmit ’neutral -- machine independent, binary format

> (option pk_session_receive)
> (option pk_session_transmit ’binary)

> (option check t) -- default setting for local checking on
> (option check nil) -- local checking off
34 Kernel Interface Driver Manual

. .Options
If local checking has been turned off, an illegal solution is not detected until a
complete body check is subsequently done, thus losing a possible legal solution
for the local operation, and leaving the body in an invalid state.

This local checking flag is initialized in (modeller start) to the global value set
using (option check). It is used in various KID functions where the underlying PK
function requires the local checking flag.

Options for rollback
The switching on/off of the roll mark facility is controlled by the logging properties.
The logging properties that can be set when switching on the logging option are:

� ki or pk or proll (the default) – to select the appropriate rollback system.
� +integer (+ve) – to select KI rollback with the given file size. The file size is

specified using the option logging_size.
� -integer (-ve) – to select the PK rollback with the given maximum number of

live marks. The maximum number of live rollmarks can be set using the
logging_number option (default number is 20).

The roll mark facility creates session marks only. To model in partitions and
create partition marks, the appropriate PK functions must be called directly, using
the PK FLICK interface. For further details on how to do this, see Chapter 4,
“Calling the KI/PK Using KID (FLICK)”.

option user_field
The option user_field function is used to set up the user field length which
is passed to STAMOD via modeller start. The user field length can not be
changed while the modeller is running, however, option user_field does store
the current setting
.

> (option pk_session_local_checking)

Expression Description
> (option user_field 0) default setting
> (option user_field 12) set user field length to 12
> (option user_field) current setting <and pending change>
Kernel Interface Driver Manual 35

. .Object-Oriented KID
Options reset by new modeling session
It is now possible to specify some options which only persist for a modeling
session, i.e. they are reset by (modeller stop;start). Currently there are
only four such options:

If the general values are modified these changes are passed on to the session
values immediately, for example:

Tolerance setting
The tolerance setting is required by various PK boolean and local operation
functions and defaults to 0.000001.

(option pk_session_tolerance)
(option pk_session_receive)
(option pk_session_tansmit)
(option pk_session_local_checking)

Expression Description
(option receive ’binary) sets global binary receive
(option pk_session_receive) enquire receive type, binary
(option pk_session_receive ’text) resets receive to text for session
(option pk_session_receive) enquire receive type, text
(option receive) check that global setting unchanged
(modeller stop;start)
(option pk_session_receive) enquire receive type, now binary
(option receive ’text) sets global text receive
(option pk_session_receive) enquire receive type, now text

Expression Description
(option pk_tolerance) enquire tolerance setting
(option pk_tolerance 0.001) set PK tolerance
(option pk_tolerance) enquire tolerance setting
(option pk_tolerance nil) reset to default value (0.000001)
(option pk_session_tolerance) enquire session tolerance
(option pk_session_tolerance 0.1) set session tolerance
(option pk_session_tolerance) enquire session tolerance
(option pk_tolerance 0.001) this also resets session value
36 Kernel Interface Driver Manual

. .Options
(option pk_session_tolerance) enquire session tolerance
(option pk_session_tolerance nil) reset to default value(0.000001)
(option pk_session_tolerance) enquire session tolerance
(option pk_tolerance) enquire tolerance setting

Expression Description
Kernel Interface Driver Manual 37

. .Object-Oriented KID
38 Kernel Interface Driver Manual

4

. .

4Calling the KI/PK Using
KID (FLICK)
4.1 Introduction
It is possible to use the Kernel Interface Driver (KID) to call the functions in the
PARASOLID kernel interface in two different ways. This chapter describes how
to do this. It is assumed that the reader is familiar with LISP and with object
oriented LISP.

4.2 Functional low-level interface to the
C-kernel (FLICK)
FLICK is a subsystem within KID which provides functions to interface directly
with the KI/PK. It consists of a small number of support functions and a large
number of functions to call the KI/PK; 2 per KI routine and 1 per PK function.
A typical KID user need not refer to any of these functions since the higher levels
of KID provides access to much of the KI/PK indirectly anyway. Those who wish
to use the FLICK routines have a choice of two modes of use:

Using upper case Parasolid KI routines
Upper case routine names (STAMOD, CRSOFA ...) map directly onto the KI
routines argument by argument. These routines merely pass simple data values
between FLICK and the KI/PK with no interpretation or simplification. They are
therefore rather unhelpful to use and require several calls to additional support
functions to interpret the results. They are made available to enable the user to
overcome any restrictions imposed by the more convenient FLICK routines.

Details of the support functions available can be found in Appendix D, “Flick
Function Descriptions”, of the Parasolid KI Reference Manual.

> (STAMOD 1 3 “KID” 0) --> (1 600382 0)
> (CRBXSO ’(0 0 0) ’(0 0 1) 5 5 5) --> (7 0)
> (IDCOEN 7 (token ’TYTOFA)) --> (69 6 0)
> (setq workspace (alloc 6)) --> @12303420
> (GTTGLI 69 1 6 workspace) --> (0)
> (empty 6 int workspace) --> (9 23 37 48 55 72)
Kernel Interface Driver Manual 39

. .Calling the KI/PK Using KID (FLICK)
Using lower case Parasolid KI routines
Lower case KI routine names (stamod, crsofa ...) and PK functions
(pk_body_ask_faces, ...), while primarily providing access to the equivalent KI/
PK function, go to greater lengths to provide convenient output in LISP data
formats. They convert integers to symbolic tokens where possible, expand arrays
and KI lists as LISP lists, suppress unused arguments and ifails, and sometimes
provide optional arguments with defaults.

4.3 Calling KI routines
All the LISP KI routines are documented individually in Appendix D, “Flick
Function Descriptions”, of the Parasolid KI Reference Manual.

Option lists
Option lists in FLICK, including associated data, are passed as an argument to
the routine in a list.

Option tokens
A simple list of option tokens can be passed in either of these formats:

Note that simple tokens in a list must either all be bracketed or all be
unbracketed, these forms cannot be mixed.

Option tokens with associated data
Associated data is passed in a sublist with the relevant token:

Note: Since only KI routines and PK function are supported, FLICK in isolation
does not support graphics devices, windows or view ports. It must be used in
conjunction with KID to access these facilities.

> (stamod) -->V6.00.382
> (crbxso ’(0 0 0) ’(0 0 1) 5 5 5) -->7
> (idcoen 7 ’tytofa) -->(9 23 37 48 55 72)

(token token token ...)
((token) (token) (token) ...)
40 Kernel Interface Driver Manual

. .Calling PK functions
- the list can include either bracketed or unbracketed simple tokens:

“options” arguments passed as lists of lists where each sub-list contains an
option token together with any associated data:

4.4 Calling PK functions
The documentation of the PK functions in the Parasolid PK Interface
Programming Reference manual should be referred to when calling PK functions
in KID.

In general, there is a LISP function for every PK function:
� The name of the LISP function is the same as the PK function except that

all characters are lower case. For example, the PK function
PK_TOPOL_find_box is called from LISP as pk_topol_find_box.

� The arguments to the LISP function are the received arguments of the PK
function.

� Arrays are represented as a list of their elements. When a PK function
passes an array as an integer length and an array as separate arguments,
the LISP function just uses a list.

Options argument
Options are passed to PK functions as options structures, and these are
represented in LISP as a list of dotted pairs. The elements of each dotted pair are
the name of a field of an options structure and the value it is to be given. For
example:

((token real real ...) (token tag ...) (token vector ...)
 ...)

(token (token real ...) token (token tag ...))
((token) (token real ...) (token) (token tag ...))

> (rrvdep ’((RROPCT 0.000259873 1000.0 3.0)
(RROPSI)
(RROPTR))
(b0 tag) nil view_matrix)
Kernel Interface Driver Manual 41

. .Calling the KI/PK Using KID (FLICK)
� Each time a PK function with an options structure is called from LISP, the
options macro is called to set all the defaults before the LISP argument is
processed to possibly change some of them.

� The option names for each field in the options structures are documented in
the Parasolid PK Interface Reference Manual.

The two following examples contain valid option structures:

However, these two examples do not:

Optional received arguments
For all the PK_BODY_create_... functions, the last received argument is a
pointer to a PK_AXIS2_sf_t function which defines the local coordinate system.
This may be NULL, indicating that the local and world coordinates are the same.
This is indicated in LISP by leaving out the argument.

> (pk_face_contains_vectors (f0 tag)
’((n_vectors . 3)
(vectors . ((0 0 0) (0 4 0) (0 5 0)))))

> (setq *vectors ’((0 0 0)(10 0 0)(0 10 0)))
> (pk_face_contains_vectors (f0 tag)

(list
(cons ’n_vectors (abs *vectors))
(cons ’vectors *vectors)

)
)

> (pk_face_contains_vectors (f0 tag)
(list

(cons ’n_vectors 3)
(cons ’vectors ’((0 0 0)(10 0 0)(0 10 0)))

)
)

> (pk_face_contains_vectors (f0 tag)
(list

(cons ’n_vectors 3)
(list ’vectors ’((0 0 0)(10 0 0)(0 10 0)))

)
)

> (pk_face_contains_vectors (f0 tag)
(list

(list ’n_vectors 3)
(cons ’vectors ’((0 0 0)(10 0 0)(0 10 0)))

)
)

42 Kernel Interface Driver Manual

. .Calling PK functions
Optional returned arguments
Many PK functions have return arguments of the form:

meaning that things can be set to NULL by an application if it does not want the
array of things returned.
Any PK function that has such optional returns has a corresponding LISP
function with optional logical arguments saying whether the array is to be
returned or not. These arguments default to t, meaning the array is returned.
However, if the argument is supplied as nil, then only the number of things –
the length of the array – is returned:

Where there are several optional returns, the optional logical arguments to the
LISP function are in the same order as the optional returns from the PK function.
To supply an optional logical argument as nil, any others preceding it must be
explicitly supplied as t or nil:

In the journal file, optional logical arguments supplied as NULL or nil are
journalled as @0.

Structures
Structures are represented as a list of their fields. This means that each struct
adds another pair of brackets. Note the following examples:

> (pk_body_create_solid_block 30 20 10
 ’((100 0 0)(0.8 0.6 0)(0 0 1)))

--- solid block defined in local coordinate system
> (pk_body_create_solid_block 30 20 10)

--- solid block defined in world coordinate system

int *const n_things --- number of things
PK_THING_t **const things --- things (optional)

> (pk_body_ask_faces (b0 tag)) --- returns a LISP list of faces
> (pk_body_ask_faces (b0 tag) nil)

--- just returns the number of faces

> (pk_shell_ask_oriented_faces (sh0 tag) t nil)

Structure Example
PK_AXIS2_sf_t ’((0 0 0)(0 0 1)(1 0 0))
Kernel Interface Driver Manual 43

. .Calling the KI/PK Using KID (FLICK)
Primitives
The following primitives are used by the LISP PK functions:

4.5 Using the quote (’)

Passing l ists directly to the KI/PK
As for s-expressions, lists which are to be passed directly to the PK/KI (without
first being evaluated by LISP) should be preceded by a quote.

Therefore, the quote must be omitted when elements are to be evaluated.

Examples of calls which do not work because of misuse of the quote are:

PK_CIRCLE_sf_t ’(((0 0 0)(0 0 1)(1 0 0)) 10)
PK_POINT_sf_t ’((10 20 30))

--- a struct containing a PK_VECTOR_t

PK LISP
int numeric atom without decimal point
double numeric atom with or without decimal point
char* ’abcd or “abcd” or (quote abcd)
PK_LOGICAL_t t or nil (strictly: if it’s not nil it’s t)
PK_VECTOR_t (list x_comp y_comp z_comp)
PK_INTERVAL_t (list low high)
PK_BOX_t (list x_low y_low z_low x_high y_high z_high)
PK_UV_t (list u v)
PK_UVBOX_t (list u_low v_low u_high v_high)

Structure Example

> (crknpa ’(20 22 24))

> (crknpa (list (b0 tag) (b1 tag) (b2 tag)))

> (crknpa (20 22 24))
> (crknpa ((b0 tag) (b1 tag) (b2 tag)))
> (crknpa ’((b0 tag) (b1 tag) (b2 tag)))
44 Kernel Interface Driver Manual

. .KI ifail checking
4.6 KI ifail checking
Like KID, FLICK performs ifail checking and raises a LISP error if a returned ifail
is considered invalid. Currently this mechanism is quite different from and
independent of the KID ifail processing, which is rather limited. Just which ifails
are allowed may be adjusted using the support function allow_ifails. A simple
example of which is:

allow_ifails function
The function allow_ifails takes any number of arguments. The first is a
specification of the ifails which are valid while the remainder, which should be
LISP expressions, are evaluated. The function returns the value obtained by
evaluating the last argument.
Initially the only valid ifail is KI_no_errors (i.e. zero), any other ifail returned
generate a LISP error. The set of valid ifails can be extended by including those
which are to be allowed in the valid ifail specification either for all KI calls or – if a
KI function name is given as the first element of the valid ifail list – only for that
named KI function. Calls to allow_ifails can be nested. Once an ifail has
been made valid it cannot subsequently be disallowed.

� To allow all ifails the (pseudo) token KI_all_ifails is provided.
� To indicate all but specified ifails use a negative sign

(e.g. – KI_not_a_tag).
� Any KI call which returns an ifail returns all its other arguments as nulls and

zeros.

For greater flexibility of use the valid ifail specification may be a list of valid ifail
specifications, as in this example.

(allow_ifails (KI_missing_geom) (IDSOFF 99))

> (allow_ifails (KI_missing_geom) (IDSOFF 99))
-- call IDSOFF but don’t produce an

error if the face lacks geometry
> (allow_ifails (STOMOD KI_modeller_not_started) (STOMOD))

-- stop the modeller but don’t complain if it isn’t started.
> (allow_ifails (KI_roll_is_off) (my_strict_programme))

-- allow KI_roll_is_off errors, but no others
> (allow_ifails (- KI_corrupt_file) (my_liberal_programme))

-- allow all errors except KI_corrupt_file
> (allow_ifails (KI_all_ifails) (my_careless_programme))

-- don’t complain about anything
Kernel Interface Driver Manual 45

. .Calling the KI/PK Using KID (FLICK)
Some lower case FLICK functions declare ifails valid like this. For example
stamod permits the ifail KI_modeller_not_stopped.

PK Errors valid_ifails tries to take PK errors and KI ifails and convert the ifails into PK
errors where possible, this is to try and ensure that code which uses KID
functionality has similar behavior when KID calls the KI and the PK.

should trap the distance_le_0 error whether (b0 create) tries to use CRBXSO or
PK_BODY_create_solid_block.

4.7 PK error checking
The function valid_pk_errors is similar to valid_ifails. It raises and
reports the number of the first LISP error which occurs within the supplied test
code:

Other types of error are not trapped, for example this still raises an error:

For multi s-expression code, use progn to prevent evaluation of the returns:

However, this raises an error because the PK error is
PK_ERROR_not_an_entity, not PK_ERROR_wrong_entity:

> (allow_ifails((IDSOFF KI_missing_geom KI_not_a_tag)
(IDCOEN KI_missing_geom KI_not_a_tag))
(setq v1 (IDSOFF 99))
(setq v2 (IDCOEN 100 (token ’TYTOFA))))

((define b0 p_block) x -10)
(valid_ifails '(KI_distance_le_0) '(b0 create))

(valid_pk_errors '(PK_ERROR_wrong_entity)
'(pk_curve_ask_interval 12))
(valid_pk_errors '(PK_ERROR_wrong_entity) '(car 1))

(valid_pk_errors '(PK_ERROR_wrong_entity)
'(pk_curve_ask_interval s))

(valid_pk_errors '(PK_ERROR_wrong_entity)
'(
progn
(define b0 p_block) create)
(pk_curve_ask_interval (b0 tag))
)

)

46 Kernel Interface Driver Manual

. .Timing
To allow both KI ifails and PK errors wrap the code in a valid_ifails function:

4.8 Timing
Like KID, FLICK also generates a timing_line message to track each KI routine
or PK function called. Some, none or all KI routine or PK functions can be traced.
The function timing controls the output of timing data for KI routine and PK
function calls. It takes one argument, the timing level and returns the new level.

� The lowest level, 0 or nil, causes no timing data at all to be printed.
� The highest level, 2 or t, causes timing data to be printed for all KI routines

and PK functions.
� Level 1 (the initial default level) results in statistics being printed for important

KI routines and PK functions, but not for ancillary ones such as KI list
handling routines.

With no argument the current level is returned unchanged.

(valid_pk_errors '(PK_ERROR_wrong_entity)
'(
progn
(undefine b0)
((define b0 p_block) create)
(pk_curve_ask_interval (plus (b0 tag) 2000))
)

)

(valid_ifails '(KI_not_a_tag)
'(valid_pk_errors '(PK_ERROR_wrong_entity)

'(
progn
(undefine b0 l0)
((define b0 p_block) create)
(chcken (plus (b0 tag) 2000))
(pk_curve_ask_interval (b0 tag))
)

)
)

Kernel Interface Driver Manual 47

. .Calling the KI/PK Using KID (FLICK)
48 Kernel Interface Driver Manual

5
5Creation of Primitives

. .
5.1 Introduction
The following sections deal with the creation of primitives which include
assemblies, points, acorns, wires, sheets, solids, curves and surfaces. The
primitive classes are temporary storage for data about an object before a kernel
item is created. When created, the objects are transferred to an appropriate
subclass of entity i.e. assembly, vertex, body, curve or surface.

5.1.1 Solid Primitives
Various types of solid can be created from primitive objects. Note that all primitive
bodies inherit pre-defined properties from the class p_body. These are point,
with a value of ’(0 0 0), and direction, with a value of ’(0 0 1). These
properties are used as defaults for the creation of some of the primitives unless
they are superseded by locally defined properties.

Creating a block

Creating a sphere

Each newly created primitive body carries properties, top and bottom, which can
be used to position further primitives.

Object Function
p_acorn, p_block, p_cone, p_cylinder, p_prism, p_sphere, p_torus,
p_paracurve, p_parasurf, p_sheet, p_wire, p_profile, p_pyramid

create

> (p_block help create) -- information on property names and
defaults

> (define b0 p_block) -- define the primitive
> (b0 x 10; y 20; z 30) -- and direction gets default values
> (b0 create)
> (b0 is) --> body

> (define b1 p_sphere)
> (b1 help create) --> information
> (b1 radius 20; point ’(10 10 10); create

-- change default point
Kernel Interface Driver Manual 49

. .Creation of Primitives
5.2 Additional Primitive Options
Additional primitive options which create non-convex bodies, self obscuring
bodies, or those with many edges meeting at a vertex, and profiles are supported
as follows for:

5.2.1 p_pyramid
The primitive type p_pyramid parameters are sides, radius, height (mandatory)
point, direction (default table). The radius may be omitted if the parameter
“length” specifying length of side is provided instead.

5.2.2 p_block, p_cone and p_cylinder
The p_block, p_cone and p_cylinder recognize the defining parameter
“thickness”, which defines the wall thickness of the primitive. Hollow pipes of
various cross section can be defined using this.

5.2.3 p_sphere and p_torus
If the thickness parameter is applied to p_sphere or p_torus a simple sphere
or torus is created containing an internal void.

5.2.4 Profiling

p_profile class
Primitive contains a class p_profile. This class allows the user to define a
facial profile on a body, from a given list of vector points. The user can create a
minimum body from a single point, a wire body from a list of unconnected points,
or a sheet body from a list of connected points (points are connected if they
define a closed loop.) An attempt to create a sheet body may fail if the points are

> (define cube p_block)
> (define bar p_cylinder)
> (cube z 50; direction ’(1 0 0); create)
> (bar height 30; radius 5; point (cube top); create)

> (define pipe p_cylinder)
> (pipe height 10; radius 5; thickness 1.5 ; create)
50 Kernel Interface Driver Manual

. .Additional Primitive Options
not co-planar. All the edges of the wire body are straight. The examples below
illustrate each case:

To create a minimum body and move it to coordinates (1 2 3):

To create a sheet body with a triangular profile:

scribe function
The scribe function may be used to scribe the bounded portion of the curve onto
a specified face, region or body.

Geometric Primitives
Simple geometric properties such as points, vectors, curves and surfaces can
also be created from primitives. Primitive curves and surfaces inherit pre-defined
properties from the class p_geometry.

Object Function
p_profile create

> (define b0 p_profile)
> (b0 coordinate ’(1 2 3))
> (b0 create)

> (define b1 p_profile)
> (b1 coordinate ’((0 0 0) (0 1 0) (1 1 0) (0 0 0)))
> (b1 create)

Note: Had the set of coordinates not been closed then a wire body would have
resulted.

Object Function
p_bounded_curve scribe

> ((define b0 p_acorn) create)
> ((define c0 p_line) point ’(0 0 0);

direction ’(0 0 1); create)
> ((define bc0 p_bounded_curve)

body ’b0;
curve ’c0;
startp (c0 deparameterise 0);
endp (c0 deparameterise 1);
scribe)
Kernel Interface Driver Manual 51

. .Creation of Primitives
Creating a circle:

Creating an ellipse:

Creating a p_wire from a p_line
p_wire creates a wire body from a bounded region of a curve. The range
property is optional if the curve is bounded.

Creating a planar surface:

Object Function
p_circle, p_ellipse, p_intersection, p_line create

> (p_circle help create) --> information
> (define c1 p_circle)
> (c1 point ’(3 2 0)) -- center of circle
> (c1 radius 10)
> (c1 direction ’(1 1 1)) -- axis direction
> (c1 create)

> (define c2 p_ellipse)
> (c2 point ’(0 10 0)) -- center of ellipse
> (c2 direction ’(1 0 0)) -- normal, i.e. ellipse in YZ plane
> (c2 majrad 10;minrad 5)
> (c2 majaxi ’(0 1 0)) -- major axis along Y axis
> (c2 create)

Object Function
p_wire create

> ((define c0 p_line) point ’(0 0 0);
direction ’(0 0 1); create)

> ((define b0 p_wire) curve ’c0; urange ’(0 1); create)

Object Function
p_planar, p_cylindrical, p_conical, p_spherical, p_toroidal,
p_swept, p_spun, p_offset

create

> (p_planar help create) -->information
> (define s1 p_planar)
> (s1 point ’(0 0 0); direction ’(1 0 0))
> (s1 create)
52 Kernel Interface Driver Manual

. .Transformation Primitives
Creating a swept surface from a given curve:

Creating a spun surface from a given curve:

Creating an offset from a given surface, which if possible, is simplified:

Creating a p_sheet from a p_planar surface: p_sheet creates a sheet body
from a bounded region of a surface. The range properties are optional bounded
parameters.

5.3 Transformation Primitives
For all of the following, the transform is first defined and then applied to the given
entity.

> ((define c0 p_line) point ’(0 0 0);
direction ’(0 0 1); create)

> ((define s0 p_swept) curve ’c0;
direction ’(1 0 0); create)

> ((define c0 p_line) point ’(0 0 0);
direction ’(0 0 1); create)

> ((define s0 p_spun) curve ’c0; point ’(0 2 0);
direction ’(1 0 0); create)

> ((define s0 p_planar) point ’(0 0 0);
direction ’(0 0 1); create)

> ((define off0 p_offset) surface ’s0; distance 5; create)

Object Function
p_sheet create

> ((define s0 p_planar) point ’(0 0 0);
direction ’(0 0 1); create)

> ((define b0 p_sheet) surface ’s0;
urange ’(0 1); vrange ’(0 1); create)

Object Function
p_equal_scaling, p_reflection, p_rotation, p_translation,
p_general_transform

apply
Kernel Interface Driver Manual 53

. .Creation of Primitives
5.3.1 p_equal_scaling

5.3.2 p_reflection

5.3.3 p_rotation

5.3.4 p_translation

5.3.5 p_general_transform
With this function the transformation is specified explicitly by the transform
matrix. Therefore, this primitive may be used to create more complicated
transforms, e.g. general affine. Note, this can only be applied to a limited subset
of the usual entities.

A combination translation and general affine deformation:

> ((define b0 p_block) create)
> ((define t0 p_equal_scaling)

scale 1.5; centre ’(0 0 5); create)
> (graphics ske ’b0; ar)
> (t0 apply ’b0)
> (graphics sketch ’b0; ar)

> ((define b0 p_block) create)
> ((define t0 p_reflection)

point ’(11 0 0); normal ’(1 0 0); create)
> (graphics ske ’b0; ar)
> (t0 apply ’b0)
> (graphics sketch ’b0; ar)

> ((define b0 p_block) create)
> ((define t0 p_rotation) point ’(11 0 0);

direction ’(1 0 0); angle 3.1415926; create)
> (graphics ske ’b0; ar)
> (t0 apply ’b0)
> (graphics sketch ’b0; ar)

> ((define b0 p_block) create)
> ((define t0 p_translation)

direction ’(0 0 1); distance 30; create)
> (graphics ske ’b0; ar)
> (t0 apply ’b0)
> (graphics sketch ’b0; ar)
54 Kernel Interface Driver Manual

. .Assemblies and Instances
5.4 Assemblies and Instances

assembly and instance functions
Assemblies and instances can be created from primitives.

Creating an empty assembly:

Creating an instance within an assembly:

disassemble function
To convert a flat assembly (a0) to the class body, where a0’s tag list contains all
those Parasolid bodies in the assembly, use:

> ((define b0 p_block) create)
> ((define t0 p_general_transform)

matrix ’ (1 0 0 1 0 2 0 1 0 0 3 1 0 0 0 1); create)
> (graphics ske ’b0; ar)
> (t0 apply ’b0)
> (graphics sketch ’b0; ar)

Object Function
p_assembly, p_instance create

> (define a0 p_assembly)
> (a0 create)

> (define i1 p_instance)
> (i1 assembly ’a0; part ’b0)
> (i1 create)

> (a0 disassemble)
Kernel Interface Driver Manual 55

. .Creation of Primitives
56 Kernel Interface Driver Manual

6

. .

6Operations on Bodies,
Curves, Surfaces, etc.
6.1 Introduction
This section covers the operations which can be performed on bodies etc. which
have been created as primitives or, in the case of bodies, have been received.

6.2 Booleans
A number of functions exist for operations which are only possible on bodies,
such as the boolean functions unite and subtract. A list and a few examples of
these functions appear below.

Assume two overlapping bodies b1 and b2 are created or received prior to each
of the following examples. In these examples b1 is the target and b2 is the tool
body. These commands preserve the tag of the target body and also return an
appropriately named object of type body containing the complete body set of the
resulting boolean operation (i.e. its tag property is a list of tag values):

� subtract_temp – for subtract
� unite_temp – for unite
� intersect_temp – for intersect
� section_temp – for section
One of the resultant bodies has the same tag as the target body and this is the
item that the target object refers to, it is not in general defined which of the result
bodies this is. The section operation is slightly different: the tool object must be
a surface, not a body, and the target object, on completion, refers to the set of
items which lie on the front (i.e. in the direction of the sectioning surface normal)
of the sectioning surface, while section_temp refers to the set of objects at the
back.

As a side effect of the boolean operation the tool body is deleted from the kernel,
its tag is dead and attempts to refer to it again produce an error.

When intersecting a sheet (target) with a solid (tool) body, the result is another
sheet. The result of an intersect must be the same as the target body.

Object Function
body check, unite, subtract, intersect, section, merge, unfix
Kernel Interface Driver Manual 57

. .Operations on Bodies, Curves, Surfaces, etc.
check function

unite function

subtract function

intersect function

6.2.1 Multiple bodies
Multiple tool bodies are supported in KID Booleans using:

6.2.2 Sectioning primitives

halve and quarter functions
Two additional sectioning functions that assist the rapid shaping of primitives are:

These functions section symmetric bodies with respect to the given axis, through
their center of gravity. If the axis direction is missed out it defaults to ’(0 0 1).

6.2.3 Operations on the single class
The single class consists of the topological items face, edge and vertex. The
functions merge and unfix are inherited by these topological items.

> (b1 check) -- check the body is valid

> (b1 unite ’b2) -- b1 is now b1 + b2
(if required, b2 can be a list of bodies)

> (b3 subtract ’b4) -- b3 is now b3 - b4

> (b5 intersect ’b6) -- b5 is now the intersecting volume

> (b0 unite ’(b1 b2))
> (b0 intersect ’(b1 b2 b3))
> (b0 subtract ’(b1 b2))

> (body halve <body axis>)
> (body quarter <body axis>) -- think of cutting a cake
58 Kernel Interface Driver Manual

. .Sewing
merge function
merge removes redundant faces, edges and vertices.

unfix function
unfix detaches, geometry from a face, edge or vertex.

6.3 Sewing
When an object of class body tag list contains a set of sheet bodies, these sheet
bodies can, wherever possible, be knitted together to form a single sheet or solid
body using the function sew.

sew function

As real parts often need manual intervention to set their edge tolerances before
the sewing operation completes successfully, the function tolerance supplied.

tolerance function
tolerance operates on edges and can be used to either set the tolerance on a
Parasolid edge or to enquire its tolerance.

6.4 Transforming bodies
All subclasses of the transformable class (body, surface, face etc.) can be moved
and rotated. The functions require that the objects have properties which define
the transformation.

move function
move has two properties; a vector (direction), which is required and a scalar
(distance), which is optional. The object is moved in the direction given by the
direction vector, through a distance given by the distance property if it is set, or
by the magnitude of the direction vector if the distance property is not set.

> (b0 sew ’solid)

> (e0 tolerance 0.000254)
-- set the tolerance of edge e0 to 0.000254

> (e0 tolerance) -- enquire the tolerance of edge e0
Kernel Interface Driver Manual 59

. .Operations on Bodies, Curves, Surfaces, etc.
rotate function
Properties for rotate are direction, point and angle, all are required.

Move a body a specified distance and direction:

rotate a body about the X axis by a specified angle:

move a face(set) a specified distance and direction:

move a face(set) by the supplied direction vector:

6.5 Blends
It is possible to create unfixed blends. The primitive for a general blend class
p_blend is set by itype to a default of a true rolling ball blend. The class
p_chamfer has local properties of type corresponding to true chamfer blends
while p_fillet duplicates the p_blend default to true rolling ball blends.
Defaults for properties such as range and type can be found with the help
facility.

p_vrb and p_ff_blend are instances of p_blend. (p_vrb help) and (p_ff_blend
help) give the properties specific to these instances; anything else relevant they
inherit from p_blend.

Object Function
transformable move, rotate

> (define b0 p_block)
> (b0 help create)
> (b0 x 10; y 10; z 10; create)
> (b0 help move) --> information
> (b0 direction ’(0 1 0); distance 12) -- b0 is a body
> (b0 move) -- this moves b0 12 units in the Y direction

> (b3 point ’(0 0 0); direction ’(1 0 0) ; angle 45)
> (b3 rotate) -- rotate b3 about the X axis by 45 degrees

> (f1 direction ’(0 0 1); distance 2)
> (f1 move) -- move f1 2 units in the Z direction

> (f2 direction ’(3 4 5))
> (f2 move) -- if no distance is supplied then the item

will be moved by the direction vector
60 Kernel Interface Driver Manual

. .Blends
6.5.1 Creating unfixed blends

p_blend, p_fillet, p_chamfer
The first steps in attaching a blend are:
� to define a primitive of the correct type to hold the blend data, and
� set the appropriate properties for the blend primitive, which are:

r1 and r2, rib, type, idraw and irib

All of these properties have default values, except for r1 and r2, which are the
ranges of the blend on the two faces adjacent to the edge the blend is to be
applied to. Only r1 is appropriate for a p_fillet.
If it is required to reverse the sense of the blend, a property of the primitive blend
named rev can be set to true before using the function apply to attach the blend
to the edge.

Having defined a p_blend, p_fillet or p_chamfer the values to be used for
the blend parameters can be set or changed. Only a single value of the range
properties r1 and r2 needs to be given in order to define the blend, in this case
the blend is symmetric. The thumbweight value for all blends is set to 1.0 and
cannot be changed. Although it is possible to change the type this could lead to
confusion as it does not change the type of the KID object concerned, so it is not
recommended.

blending properties
Blending properties, when required, must be set before the blend is applied:

p_vrb
This allows you to specify a positions property (either a list of values or the
string ’ends) and a ranges property of the same length (except for ’ends for

Property Description
smooth t => BLECSM option
propagate t => BLECPR option
cliff_edge takes edge object and passes it in with the BLECCL option
irib t => pass rib value in with BLECRI option
draw t => BLECDF option
Kernel Interface Driver Manual 61

. .Operations on Bodies, Curves, Surfaces, etc.
which it should be of length 2) which is passed into variable radius blend creation.
For example:

p_ff_blend
This requires the specification of the two walls of faces to be blended, then the
blending options if changes from the default values are required. The face sets
are defined as

� left wall of faces
� right wall of faces
� if reversed, then set the sense flag to true

The options settings can be examined by:

There is then a simple way to set up all the relevant properties using KI tokens
and the function convert_ki_options:

(undefine b0 e0 bl0)
((define b0 p_block) create)
((define e0 edge) pick_from 'b0;
pick_using '(e0 clash '(5 0 10)))
((define bl0 p_vrb) ranges '(1 4); positions 'ends; apply 'e0)
(b0 blend_fix; check)
(undefine b0 e0 bl0)
((define b0 p_block) create)
((define e0 edge) pick_from 'b0;
pick_using '(e0 clash '(5 0 10)))
((define bl0 p_vrb)

ranges '(1 3 4);
positions '((5 5 10)(5 0 10)(5 -5 10));
apply 'e0)

(b0 blend_fix; check)

((define ff0 p_ff_blend)
left_wall ’f0;
left_sense t;
right_wall ’f1;
)

(ff0 options)
62 Kernel Interface Driver Manual

. .Blends
Alternatively, each property required can be specified by name:

The create reports an error if one occurs, and raises a LISP error if
(option raise_blending_errors t) has been set.

The functions which require 1D curve data extract the relevant data (x, y and z
components) from the given curve. For example, if c0 is a 3D B-curve with tag 28:

((define ff0 p_ff_blend)
convert_ki_options

(list
’(FXFTCB 0.005)
’(FXFTTL 0.00003)
’(FXFTPR)
’(FXFTMS)
’(FXFTAT)
(list ’FXFTCE (list (e0 tag)(e1 tag)))

)
)

(ff0 cliff_edges ’e0; --- FXFTCE
r1 0.005; --- FXFTCB
tolerance 0.00003; --- FXFTTL
propagate t; --- FXFTPR
multiple_sheets t; --- FXFTMS
walls ’attach; --- FXFTAT
create)

((define ff0 p_ff_blend)
range1_curve ’c0; --- extract the x component
range2_curve ’c0; --- extract the y component
rho_curve ’c0; --- extract the z component
...
create)

((define ff0 p_ff_blend)
range1_curve c0; --- extract the x component
range2_curve c0; --- extract the y component
rho_curve c0; --- extract the z component
...
create)

((define ff0 p_ff_blend)
range1_curve 28; --- extract the x component
range2_curve 28; --- extract the y component
rho_curve 28; --- extract the z component
...
create)
Kernel Interface Driver Manual 63

. .Operations on Bodies, Curves, Surfaces, etc.
If c0, c1 and c2 are 1D B-curves (tags 29, 30, 31):

The data can also be input explicitly:

apply function
To attach the blend attribute to the model, the function apply is used.

((define ff0 p_ff_blend)
range1_curve ’c0;
range2_curve ’c1;
rho_curve ’c2;
...
create)

((define ff0 p_ff_blend)
range1_curve c0;
range2_curve c1;
rho_curve c2;
...
create)

((define ff0 p_ff_blend)
range1_curve 29;
range2_curve 30;
rho_curve 31;
...
create)

((define ff0 p_ff_blend)
range1_curve ’(3 1 nil (7.0 8.0 9.0 9.0 9.0 8.0 7.0)
(4 3 4) (-10.0 0.0 10.0)
PK_knot_piecewise_bezier_c nil t);
...
create)

Note: The name of the edge to attach the blend to must be quoted. The default
setting of itype for p_blend is 3, the value for a true rolling ball blend.

Object Function
p_blend, p_fillet, p_chamfer, p_vrb, p_ff_blend apply

> (p_blend help apply) --> information
> (define f1 p_blend)
> (f1 r1 3.2) -- reset range values
> (f1 apply ’e0) -- apply offset blend to edge e0

(e0 has already been defined and picked)
64 Kernel Interface Driver Manual

. .Blends
6.5.2 Checking, enquiring and removing unfixed
blends, and picking blends

blend_check function
blend_check checks the validity of a blend on a particular edge, or set of
edges.

blend_enquire function
blend_enquire returns blend information.

blend_remove
The function blend_remove can be used to remove any unfixed blend attribute
from an edge. Once blends have been fixed, blend_remove can not remove a
blend from an edge.

pick_blends function
pick_blends identifies the edge(s) of a body which has unfixed blends
attached.

6.5.3 Fixing blends

blend_fix function
The blend_fix function fixes all unfixed blends on a specified body.

Object Function
edge pick_blends, blend_remove, blend_check, blend_enquire

> (e0 blend_check) -- check unfixed blend on edge(s) e0

> (e0 blend_enquire) -- information on unfixed blends on
edge(s) e0

> (e0 blend_remove) -- remove unfixed blend from edge(s) e0

> (e0 pick_blends ’b0) -- pick unfixed blend on edge(s) e0 from
body b0
Kernel Interface Driver Manual 65

. .Operations on Bodies, Curves, Surfaces, etc.
6.5.4 Extracting blend information from a
blended body

extract function
The function extract extracts the blend information from a blended edge into
the properties of a p_blend primitive. This leaves the edge without a blend.
Blend extraction is from one edge only, and returns t if the extraction has been
successful.

6.5.5 Creating a cliff-edge blend

cliff_edge blend function
The function cliff_edge creates a cliff edge, but does require that the edge
that is the “cliff to” edge is specified.

Object Function
body blend_fix

> (b0 blend_fix) -- all unfixed blends are fixed in body b0

Object Function
p_blend extract

> (define bl1 p_fillet) -- define blend
> (bl1 r1 5; apply ’e1) -- and apply to edge e1
> (define bl2 p_blend) -- define bl2 as a p_blend
> (bl2 extract ’e1)

-- extract blend information from e1 into bl2
> (bl2 r1 1;apply ’e1) -- change parameter and re-apply to e1

> (define bl1 p_fillet) -- define blend
> (bl1 r1 5) -- set range values
> (bl1 cliff_edge ’e0; apply ’e1) -- apply blend, ‘cliff to’ e0
66 Kernel Interface Driver Manual

. .Sweeping and swinging
6.5.6 Defining and fixing a blend in a single
operation
To define and fix a blend in a single operation use either of the relevant fillet
or chamfer functions.

Fillet and chamfer work :

� on a solid body – all edges are blended
� on a solid face – all the edges of the face
� at a solid vertex – all the edges at the vertex

Fillet also works on sheet and wire bodies :
� on a non-solid body – all vertices are blended
� on a sheet face – all the vertices of the face
� at a non-solid vertex – the list of vertex tags

6.5.7 Blending on vertices
Support for variable radius blends is by filleting a vertex object with two tags and
2 radii.

6.6 Sweeping and swinging
Many subclasses of the topology class can be modified with the functions sweep
and swing.

� minimum bodies can be swept/swung into wire bodies;
� wire bodies can be swept/swung into sheet bodies;
� sheet bodies can be swept/swung into solid bodies.

sweep function
The sweep function takes a vector as its argument.

> (topology fillet <radius>)
> (topology chamfer <radius>)

> (define v0 vertex)
> (v0 pick)
> (v0 pick) -- two vertices on a single edge
> (v0 fillet ’(1.5 5.5)) -- varying radii
Kernel Interface Driver Manual 67

. .Operations on Bodies, Curves, Surfaces, etc.
swing function
The swing function takes as its arguments:

� the direction of the rotation axis,
� a point on the direction axis, and
� an angle through which the body is to be swung

Using sweep to create a solid body from a minimum body:

Using sweep and swing to create a semi-circular sheet body from a minimum
body which is then subsequently swung to form a hemisphere:

Some care has to be taken when creating a sheet body using sweep and swing
on wire vertices. The example below has the same effect as the method shown
above for creating a semi-circular sheet.

The function fix is finally used to attach a planar surface to one of the faces
consisting of surfaces geometry.

Object Function
topology sweep, swing

> (define b1 p_acorn)
> (b1 create) -- b1 is an acorn at the origin
> (b1 help sweep) -- for information on sweeping b1
> (b1 sweep ’(10 0 0)) -- b1 is now a wire body
> (b1 sweep ’(0 20 0)) -- b1 is now a sheet body
> (b1 sweep ’(0 0 30)) -- b1 is now a solid body

> (define b2 p_acorn)
> (b2 create)
> (b2 sweep ’(10 0 0))
> (b2 point ’(0 0 0); direction ’(0 0 1); angle 180)
> (b2 swing) -- b2 is now a semi-circular sheet body

-- center at the origin, radius 10, arcing
-- from (10 0 0) to (-10 0 0)

> (b2 point ’(0 0 0); direction ’(1 0 0); angle 180)
> (b2 swing)

-- b2 is now a hemisphere, center at
-- the origin, radius 10 in positive Z

Note: Scribe must be the last function used, if the wire is to be closed, creating
a body without geometry on the faces.
68 Kernel Interface Driver Manual

. .Hollowing, offsetting and imprinting
6.6.1 Sweeping faces
Faces of sheet and solid bodies can both be swept.

6.7 Hollowing, offsetting and imprinting

6.7.1 Hollowing

hollow function
The function hollow creates a hollowed part from a solid body taking the single
argument of the required wall thickness, (passing a negative distance causes the
hollow to work outwards):

This operation does not necessarily return a non-zero ifail in the event of a
failure, it tries to return diagnostic information. Therefore, to make the hollow
function fail when hollowing is unsuccessful, set the following option before
attempting the operation:

> (define b3 p_acorn)
> (b3 create; direction ’(10 0 0); move)
> (b3 point ’(0 0 0); direction ’(0 0 1); angle 180; swing)
> (define n1 p_line)
> (n1 point ’(0 0 0); direction ’(-1 0 0); create)
> (define b4 p_bounded_curve)
> (b4 body ’b3; curve ’n1)
> (b4 startp ’(10 0 0); endp ’(-10 0 0))
> (b4 scribe)
> (define f1 face)
> (f1 pick_from ’b3)
> (f1 fix) -- planar surface fitted to face

> (f0 sweep ’(0 0 10))

Object Function
body hollow, offset, imprint

> (b0 hollow 1) -- thickness of walls

> (option raise_hollowing_errors t)
Kernel Interface Driver Manual 69

. .Operations on Bodies, Curves, Surfaces, etc.
hollowing properties
Hollowing properties, when required, must be set on the body before the
hollowing operation:

pierce_faces function
An option parameter may be set to pierce some of the faces of the resulting body
opening up the interior void.

Hollowing a body and opening up two faces:

In the above example:

� first the body is copied,
� offset surfaces are then created from the faces which are NOT to be opened

up,
� the corresponding faces on the copied body are tweaked to these offset

surfaces,
� and finally the copy is subtracted from the original, leaving the hollow body.

6.7.2 Offsetting

offset function
The offset function offsets the faces in a body by a specified distance:

Property Description
check_hollow t or nil:

� off and face checking translates to nil,
� full checking translates to t

pierce_faces list of faces not to be offset
offset_faces list of faces with specific offsets
tolerance maximum applied tolerance
max_faults maximum number of entities on badtaglist

> (b0 pierce_faces (f0 tag)) -- faces to remove
> (b0 hollow 0.1) -- hollow & pierce

> (b0 offset 1) -- makes a bigger body
> (b0 offset -1.5) -- makes a smaller body
> (f0 offset 10) -- just do a faceset
70 Kernel Interface Driver Manual

. .Hollowing, offsetting and imprinting
offsetting properties
Offsetting properties, when required, must be set on the body before the
offsetting operation:

6.7.3 Imprinting

imprint function
The imprint function

works, where either of a or b are a faceset or a body.

Note: Since this exploits local operations, the offset distance must be small
enough so that the topology of the body is not changed.

Property Description
check_offset t or nil:

� off and face checking translates to nil,
� full checking translates to t

pierce_faces list of faces not to be offset
offset_faces list of faces with specific offsets
tolerance maximum applied tolerance
max_faults maximum number of entities on badtaglist

> (a imprint b)
Kernel Interface Driver Manual 71

. .Operations on Bodies, Curves, Surfaces, etc.
72 Kernel Interface Driver Manual

7

. .

7Local Operation
Functions
7.1 Introduction
Functions which are grouped as local operations operate only on that part of the
body represented by the given face set.

tweak function
tweak is a local operation that can be used to change the existing surface of a
face to a given surface. The topology would be unaltered. tweak takes as an
argument a list of of faces and a corresponding list of surfaces.

ntweak function
ntweak is similar to tweak, but changes the existing surface of a face to a given
surface but is reversed. The topology must be unaltered.

twefac function
twefac is a local operation that can be used to modify the surface of a face by
a given transformation. It can also apply a transformation or a list of

Object Function
face(s) tweak, ntweak, twefac, create_sheet, remove_faces, create_solid,

delete_faces, taper

> (define b1 p_block)
> (define b2 p_cylinder)
> (b1 x 10;y 10;z 10;create)
> (b2 radius 1; height 10; point ’(0 5 5);

direction ’(0 1 0); create)
> (b1 unite ’b2) -- unite small cylinder onto side of block
> (graphics sketch ’b1; silhouette; autowindow; redraw)
> (face help tweak) -- for information on how to tweak a face
> (define f1 face)
> (f1 pick) -- pick block top face using the cursor
> (define s1 p_planar)
> (s1 point ’(0 0 50); direction ’(0 0 1); create)

-- s1 is plane at Z = 50 parallel to XY plane
> (f1 tweak ’s1) -- this will raise the face up to the surface

s1, and now body b1 has the dimensions x 1O, y 10, z 50
Kernel Interface Driver Manual 73

. .Local Operation Functions
transformations to either a list of faces or a list of lists of faces. In all cases the
topology must be unaltered.

create_sheet function
This face function copies the geometry and topology of the face and uses them
to make a new sheet body create_sheet_temp. It only works for single items,
not sets.

> (define b1 p_block)
> (b1 x 10;y 10;z 10;create)
> (face help twefac) -- for information on twefac
> (define f1 face)
> (f1 pick_from b1) -- pick the faces from the block
> (define t1 p_translation)
> (t1 direction ’(1 -1 1); distance 30; create)
> (graphics clear)
> (graphics sketch ’b1; autowindow; redraw)
> (f1 twefac ’t1) -- translate all the faces
> (graphics sketch ’b1; autowindow; redraw)
> (f1 twefac ’t1) -- translate all the faces again
> (graphics sketch ’b1; autowindow; redraw)

> (define f0 face)
> (f0 pick)
> (f0 create_sheet)
74 Kernel Interface Driver Manual

. .Introduction
remove_faces, create_solid and delete_faces
functions
This sub group of face functions create new offspring bodies from a set of faces.
� create_solid - Makes a copy of the faces involved and creates a new body

from the copy.
� remove_faces - Removes the faces from their parent body, heals the parent

and uses the face set to make a new body.
� delete_faces - Deletes the face set from the parent body and heals the

wound. An argument, one of the three listed below, determines how the
wounds on parent and offspring bodies are mended.
� cap - Fits the simplest surface to the bounding edges.
� grow - Only for create_solid and remove_faces. Grows

surrounding edges and faces, extending them with their surfaces to
cover the wound.

� growp - Makes an offspring body, using parent surfaces and curves of
edges to mend the wound.

� shrink - If extending faces does not yield a solution, then shrinking the
faces is tried.

The new child bodies created are given names of the form
create_solid_c1, create_solid_c2 (etc)/ remove_faces_c1,
remove_faces_c2 (etc) depending on which function created/removed them,
and the number of child bodies created/removed.

In the case of remove_faces, where the parent is modified, the resulting parent
body is returned as remove_faces_p1. remove_faces is the only function
which can take up to two optional arguments.

� When no arguments are given, cap is used to mend both parent and
offspring bodies.

� When only one argument is given, this is used to mend the parent. The
default is used to mend the offspring.

� Where two arguments are given, the first is used to mend the parent, the
second to mend the offspring.
Kernel Interface Driver Manual 75

. .Local Operation Functions
taper function
taper drafts a set of faces, which can be any combination of planar, cylindrical
and conical surfaces. It has taper properties of point, direction and angle, which
define the taper plane and angle (see the description of TAPFAS for details of the
effects of this operation and the meaning of the properties involved).

The following tapers a previously defined set of faces by 2 degrees about a taper
plane, defined by the point and direction parameters:

> (define f2 face)
> (f2 pick2) -- pick two faces of cylindrical boss

from a body previously drawn
> (f2 create_solid ’growp) -- create new body with copied faces

using growp to mend wound.
> (define f2 face)
> (f2 pick2) -- pick two faces of cylindrical boss

from a body previously drawn
> (f2 remove_faces ’grow)

-- remove faces and mend parent with grow and create new
body with copied faces, using default cap for mend

> (define f2 face)
> (f2 pick2) -- pick two faces of cylindrical boss

from a body previously drawn
> (f2 remove_faces ’growp ’grow)

-- remove faces and mend parent with grow using parent
surfaces to mend wound, create offspring with copied faces

> (define f2 face)
> (f2 pick2) -- pick two faces of cylindrical boss

from a body previously drawn
> (f2 delete_faces ’cap) -- delete these faces from b1 and

cap the ’wound’

> (f1 point ’(0 0 10); direction ’(0 0 1); angle 2; taper)
76 Kernel Interface Driver Manual

8

. .

8Miscellaneous Useful
Functions
8.1 Replication of objects within the
modeller

replicate function
The replicate function can be used to make replicas of objects and copies of
items within the modeller.

The following example shows the effect upon objects which do not refer to a
kernel item and those the kernel is not capable of copying, in this case before a
primitive has been turned into a body.

The function copies all the local properties of one object to another object, and
overwrites any existing properties with the same names.

If the objects refer to an item in the kernel which can be copied:

This also copies all local properties of b0 to b3, except for the tag property.
When the replicate function encounters the tag property, it calls the KI routine
COPYEN to create a copy of the kernel item. The tag of this new item is put into
the tag property of the copied object.

Object Function
modeller replicate

> (define b0 p_sphere)
> (b0 centre ’(0 0 1); radius 10 ; colour ’red)

-- local properties of b0
> (define b1 p_sphere) -- the object must be defined first
> (b1 replicate ’b0) -- b0 is copied into b1
> (b1 colour) --> red
> (b0 create) -- create sphere body b0
> (b1 create) -- create sphere body b1

> (define b0 p_torus)
> (b0 majrad 20; minrad 5; colour ’blue; create)

-- create torus b0, property blue
> (define b3 body)
> (b3 replicate ’b0) -- copy b0 and property into b3
Kernel Interface Driver Manual 77

. .Miscellaneous Useful Functions
The kernel objects which cannot have their tags copied in this way are edges,
faces, vertices, loops, shells and attributes; a call to replicate for these
objects creates a new object with the same tag value.

8.2 Renaming a modeller item

rename function
The function rename enables a name change of a modeller item.

8.3 Selecting an entity using its identifier

identify function
To uniquely select a face from a body in a way that is not session dependent you
can use their identifiers.

Identifiers are the same after the body is transmitted or received, and they are the
same in copies of the part also.
Getting to the tags again from the identifiers requires specifying which part the
identifiers refer to:

This locates the tags of these faces and saves them in the object f0.
This method is much faster and more robust than doing a pick on a complex
body. It may be useful to locate faces in test scripts.

Object Function
modeller rename

> (define b0 p_block)
> (b0 x 10; y 20; z 30; create)
> (b0 rename ’p7112) --> renames b0 to p7112
> (p7112 is) --> body
> (b0 is) --> error as b0 is now undefined

> (f0 identify) --> (FA2 FA33 FA100)
> (e0 identify) --> (ED12 ED24)

> (f0 identify_in b0) -- mandatory parameter
> (f0 identify ’(FA2 FA33 F100))
78 Kernel Interface Driver Manual

. .Magnifying, reflecting and mirroring a body
8.4 Magnifying, reflecting and mirroring
a body

magnify function
The function magnify scales a body about it’s center of gravity.

reflect function
The function reflect images the body in a plane.

A plane can conveniently be created by picking from the model. for example:

mirror function
The mirror function copies a body, reflects it and unites with the mirror image,
merging out redundant topology.

8.5 Mass properties
Mass property enquiries are driven from general functions associated with the
topology object:

The interpretation of the mass_amount (“amount” in the PK documentation) and
periphery depend upon the specific type of topology. Bodies, faces and edges
have specific enquiries for some of this information:

> (body magnify <scale>)

> (body reflect <plane>)

> (define s1 surface)
> (s1 pick) -- & use graphics picking

> (body mirror <plane>)

(topology mass_amount)
(topology mass)
(topology cofg)
(topology mofi)
(topology periphery)
Kernel Interface Driver Manual 79

. .Miscellaneous Useful Functions
All the above functions take two optional arguments. The first is used to control
the accuracy of the calculations and defaults to 0.95 (this is not especially
precise), for example:
(e0 length 0.9) would provide a less accurate result.

The second is just a logical which controls whether facesets are considered as a
single solid or not. This affects the meaning of the amount and periphery values,
e.g.

(f0 mass_amount 0.95 t) returns the volume of the enclosed space,
whereas
(f0 mass_amount 0.95) returns the surface area of the faces.

8.6 KI/PK Functions
It is possible to combine low level calls to individual KI/PK functions,

with KID commands as have been described in this chapter. This may be
necessary in cases where only a low level call to a particular KI/PK routine is
possible. This is described in Chapter 4, “Calling the KI/PK Using KID (FLICK)”.

(body volume)
(body area)
(face volume) --- Treating the face set as a single solid
(face cofg 0.95 t) --- Treating the face set as a single solid
(face cofg)
(face area)
(face periphery)
(edge length)

> (<KI routine name> <arguments separated by spaces>)
80 Kernel Interface Driver Manual

9
9Enquiries

. .
9.1 Introduction
This chapter describes the enquiries available in KID.

enquire function
It is possible to enquire about topological and geometrical items. The enquire
function is applicable to points, curves, surfaces, vertices, edges and faces. The
function can be used to print out either all available information or just specific
details about the geometry of the item. For instance, assuming c1 (a curve), f1 (
a face) and a1 (an assembly) have already been picked:

This prints out information about the geometry of the item on the screen.
� For the curve, the type is given, and also information about its geometry. For

example, if the curve is a circle, the center point, axis and radius are printed
out.

� For the face, the geometry of the attached surface is printed out, together
with the values of the sense and reverse flags for the surface and face
respectively, and the tolerance. For example, the outside face of a cone has
a conical surface, whose surface sense is 1, i.e. positive.

� For the assembly, the number of components it consists of; how many of
those components are sub-assemblies; and its box vector are printed out.

Using enquire on a one layer assembly
In addition, for assemblies of only one layer of substructure, a statement to that
effect and the number of sheet and solid bodies the assembly consists of are
printed out.

Object Function
modeller enquire

> (c1 enquire)
> (f1 enquire)
> (a1 enquire)
Kernel Interface Driver Manual 81

. .Enquiries
Using the level function to create a single layer
assembly
To convert an “unlevelled” assembly to a single layer assembly, type:

Other enquiries on an assembly are:

It is also possible to get more specific information from the enquire function. An
argument identifying the type of information required is given to the enquire
function, and the function thens return the value of the information, or nil if it is
not found.
Assuming c1 is a circular curve:

9.2 Enquiring/setting the tag property
If a primitive is created, or if an object has been picked from the screen, it has a
property which contains the value of the kernel tag which represents the item.
KID uses this when it calls the KI / PK. It is possible to access the value of the
tag, or to set it to a particular value. For instance, if it is known that tag 99 refers
to a face, the following creates an object which may then be manipulated by KID:

It may prove useful to manipulate tag values in this way to perform operations
which are not possible with the normal KID functions.

> (a1 level)

> (a1 instances) -- a list of the first layer of instances
> (a1 bodies) -- a list of the first layer of bodies
> (a1 transforms)

-- a list of the first layer of transform tags

> (c1 enquire ’point) -->(0 0 0)
> (c1 enquire ’direction) -->(0 0 1)
> (c1 enquire ’radius) --> 42
> (c1 enquire ’maj_axis) --> nil
> (c1 enquire ’type) --> circle

> (define f1 face)
> (f1 tag 99) -- set tag property to 99
> (f1 enquire) --> information
> (f1 tag) --> gives tag value 99
82 Kernel Interface Driver Manual

. .Using enquire to construct complex functions
9.3 Using enquire to construct complex
functions
Some KID functions result in the tag property of an entity having a LISP list of
tags. An example of this is the function pick_from. It is often possible to
manipulate an object with a list of tags using the same functions as if it had a
single tag. This facility is not provided by all KID functions.

This form of the enquire function can be used to construct complex functions
where the geometry of one surface is used to define the size of another.

The argument type can be used to select specific curve or surface types, which
are named as follows:

> (define b1 p_block)
> (b1 x 10; y 20; z 10; create) -- create block b1
> (define f1 face)
> (f1 pick_from ’b1) -- f1 is a list of b1’s 6 faces
> (f1 pick_using ’(f1 clash ’(5 5 10)))

-- leave only those faces which clash with this point f1
 now refers to a set of three faces from body b1
> (f1 enquire) --> information
> (f1 direction ’(10 9 8); move)

-- this will move all three faces

> (define b0 p_cone)
> (b0 lrad 10; urad 0; height 30; create)
> (define f1 face)
> (define s1 surface)
> (f1 pick_from b0)
> (f1 pick_using ’(f1 clash ’(0 0 30)))

-- see later for clash definition
> (s1 pick_from f1)
> (f1 enquire)
> (s1 enquire)
> (s1 enquire ’sense)

Curve Surface
line planar
circle cylindrical
ellipse conical
intersection spherical
B-curve toroidal
SP-curve blend
Kernel Interface Driver Manual 83

. .Enquiries
Use of the enquire function within the pick facility using type is described in the
section “Picking directly from other objects” in Chapter 14, “Picking”.

9.4 Accessing the KI routine IDCOEN for
topological entities
A convenient way of accessing the KI routine IDCOEN for topological entities is:

9.5 Enquiring coordinates of box
enclosing single item
The function box returns two vectors defining the extremes of a minimal
rectangular box aligned with the axis system, and enclosing the single topology
item, or list of topology items of the same type. This is true for assemblies,
bodies, faces, edges and vertices. For a single vertex point, the box extremes are
identical.

foreign_geometry B-surface
constant_parameter swept

spun
offset
foreign_geometry

Curve Surface

> (b0 faces) -- returning a list of b0’s (body) faces
> (f0 edges) -- returning a list of f0’s (face) edges
> (a0 bodies) -- returning a list of a0’s (assembly) bodies

Object Function
topology box

> (define b1 p_block)
> (b1 x 10;y 20;z 30; create)
> (b1 box) --> ((-5.0 -10.0 0.0) (5.0 10.0 30.0))
> (define v1 vertex)
> (v1 pick_from ’b1)
> (v1 box) --> ((-5.0 -10.0 0.0) (5.0 10.0 30.0))
> (v1 pick_using ’(v1 clash ’(5 10 30)))
> (v1 box) --> ((5.0 10.0 30.0) (5.0 10.0 30.0))
84 Kernel Interface Driver Manual

. .Enquiring on a supplied point
9.6 Enquiring on a supplied point
Function clash provides a means of testing whether a supplied point is contained
in, on or outside a body, face, edge or vertex. Clash uses the KI routine ENCONT.

Object Function
topology clash

> (define b1 p_block)
> (b1 x 20; y 20; z 10; create) -- creates block
> (b1 help clash) --> information on clash for b1
> (b1 clash ’(0 0 5)) --> in
> (b1 clash ’(0 0 0)) --> on
> (b1 clash ’(0 0 -5)) --> nil (i.e. outside)
Kernel Interface Driver Manual 85

. .Enquiries
86 Kernel Interface Driver Manual

10
10Attributes in KID

. .
10.1 Using attributes
An example of the function of an attribute colour, given a face set f0 with tags
is:

10.2 Constructing attributes
There are 5 ways to create a working attribute.

Activate all current attributes

Interrogates the model for all active attributes and build corresponding objects in
KID with matching names. Only attributes new to the World since the last call to
this are re-created.

Attach to an existing attribute

The effect is as in the first method, but since only a single attribute is processed
this is faster.

> (colour enquire) --> output information about attribute
definition

> (f0 colour) --> delete all colour attributes in f0
> (f0 colour ’(0.3 0.3 0.3))

--> create colour attributes on all f0

> (attribute update)

> (colour create)
Kernel Interface Driver Manual 87

. .Attributes in KID
Specify a full attribute definit ion

Create just from the tag

This path is used to do the work for the first option.

Post the attribute name but delay creation until
actual use

10.3 Defining attribute structures
Attribute structures are defined from a list of names, each field in the structure
can be of type: real, integer, string, vector, coordinate, direction or axis.

The structure must always be given as a list, even if only one field is needed.
Additionally an attribute with NO fields is valid. This is indicated in KID by
defining the structure to be t.

If a structure is not defined, KID interrogates the kernel when the attribute is
created to try and find an existing structure definition for an attribute of that name.

> (define spin_axis attribute)
> (spin_axis owners ’(face body assembly))

-- or inherit the default
> (spin_axis class 5)
> (spin_axis prefix "CUSTOMER/") -- optional
> (spin_axis name "rotation_axis") -- mandatory
> (spin_axis create)

> (attribute create 21)

> (define colour system_attribute)
> (colour lazy) -- only supported for system defined
attributes

> (define myatt attribute)
> (myatt structure ’(string vector real vector real))
> (myatt create)

> (define marked attribute)
> (marked structure t)
> (marked create)
88 Kernel Interface Driver Manual

. .Reading from attributes
10.4 Reading from attributes
Values are returned in the order implied by the structure definition, formatted into
sublists to reflect the implied structure of axis, coordinate, vector and direction
subfields. Since an object may have several tags, each with an attribute
attached, or since class 6 and 7 attributes may be attached to a single owner
multiple times, each set of attribute data is returned in a separate list.

Attributes with a single field return that field without enclosing it in another list.

Attributes with no fields return a (t) for each tag in the object taglist which has
the attribute attached and nil if there are none at all.

10.5 Writing to attributes
The attribute values should be supplied in the order which corresponds to the
structure definition.

Integer values may be provided in positions in which real values are expected.

Reflecting embedded structure of the data values using brackets is optional.
Structures with a single field need not be enclosed in a list. So both the following
work:

> (f0 hatching) --> ((0.1 0.2 0.3 4) (0.2 0.2 0.2 1))
-- data for two tag lists

> (e0 blend_v5)
--> ((0.3 1 (0.1 0.2 0.3) (4.4 5.5 6.6)))
-- an attribute structure with 2 vector fields

> (f0 name) --> (George)one tag with a name attached
> (g0 name) --> (Peter Bob two tags have a name attached

> (f0 marked) --> (t t t t) 4 of the faces are marked
> (f0 marked) --> nil - none of the faces are marked

> (b0 density ’(135.4 kg/m3))
-- real before string in this case

> (b0 density ’(135 kg/m3))
Kernel Interface Driver Manual 89

. .Attributes in KID
Structures with no fields can always be set using the value t. All structures can be
unset (deleted) by using the value nil.

10.6 Controlling attribute names
If the class of attributes has a standard prefix then it would be convenient to take
this for granted whilst working with the attributes. This system is already used for
system_attributes which have a prefix of SDL/TYSA_.

Alternatively the full attribute name can be overridden manually before it is first
created.

> (f0 translucency ’(0.5))
> (f0 translucency 0.5)

> (f0 marked t) -- set a logical attribute
> (f0 marked nil) -- delete for any attribute

> (define site_attribute attribute)
> (site_attribute prefix "EDS/UG_")
> (define system_id site_attribute)
> (system_id structure ’(integer))
> (system_id create) -- New site_attribute system_id:

full name EDS/UG_SYSTEM_ID

> (define id attribute)
> (id name "EDS/UG_SYSTEM_ID")
> (id structure ’(integer))
> (id create) -- New attribute id:full name EDS/
UG_SYSTEM_ID
90 Kernel Interface Driver Manual

11

. .

11KID Graphics:
Overview
11.1 Introduction
Within KID there is a graphical support library known as GRA. This module is
only contained in KID and not in the PARASOLID kernel library. Calls are made
to GRA to define a viewing environment, and then calls may be made to the
Parasolid rendering functions. These also call GRA (via the Frustrum) and this
results in the appearance of a picture on the screen, or transmission of graphical
output to a file.

Opening an Xwindow
To open an X window for graphical display, type:

Re-using an existing graphics window
To re-use an existing open graphics window, allowing a lisp script to be re-run
multiple times without spawning multiple windows, type:

Using the class structure, which provides inherited functions and properties, the
user may define many different views with great ease. A new view may be
defined to show the same objects from a different viewpoint (e.g. for orthographic
views), or to show different objects from the same view (e.g. for assembly
viewing).

For instance, if it is required to zoom in on an area of the picture a new view can
be defined as a subclass of the current view. The window sizes can be changed
and all other properties are inherited. The picture can then be drawn for the new
view without altering the default graphics view. This scrap view can be deleted or
kept for later use.
KID only allows one view to be active, although any number can be defined.
When KID is started by the command (modeller start), a default view is defined
and selected.

Functions are provided which allow the user to easily change the definition of the
view, to send output to files or the screen and to pick items from the display.

> (graphics open_device ’x)

> (graphics reopen_device ’x)
Kernel Interface Driver Manual 91

. .KID Graphics: Overview
11.2 The Class Structure
The pre-defined class structure for KID graphics is very simple, see the
“Graphics substructure” section in Appendix A, “KID Class Structure”. All
graphics functions and default view information are held in a class called
xgraphics. graphics is a subclass of xgraphics and inherits all its properties.

Altering Defaults
It is possible to alter the defaults which are defined in the xgraphics class
directly, but it is preferable to leave these alone. There are two methods that can
be used, the first is to work in the subclass graphics, so that default values can
be restored from xgraphics (or by removing the properties from graphics –
which has the same effect). The other method is to define subclasses in which
defaults can be changed and restored to the graphics default in the same way.

Current View
KID allows one class to be the current view. All interaction with GRA is in terms
of the attributes (local or inherited) of this current view.

11.3 Output Devices
When KID creates and selects the first view (i.e. graphics) it opens a null device
to send its output to. It is possible to open and close other devices, and to send
output simultaneously to a number of devices. This and other device dependent
KID functions are described in Appendix F, “Machine Dependency in KID”.

> (graphics help) -- information
> (graphics view_to ’(10 2 5)) -- default value changed
> (graphics view_to (xgraphics view_to))

-- default retrieved from xgraphics
> (define my_view graphics)

-- define subclass of graphics with all graphics functions
> (my_view select) -- select my_view
> (my_view help view_to) -- help on graphics property view_to
> (my_view view_to ’(1 1 1)) -- reset view_to
> (my_view - view_to) -- removes local setting

Note: In the following KID examples any subclass of the graphics object can be
substituted for the graphics object graphics.

> (graphics current_view)
--> returns the name of the current view
92 Kernel Interface Driver Manual

. .Output Devices
Framemaker, Interleaf, Laser, Plot and Postscript
These graphics functions are designed to write graphical output to a file in a
specified format. Each function takes a text argument which is used for the output
filename. The output is equivalent to that which would result from a (graphics
redraw) command.

The postscript output files are, at least, minimally conforming to the postscript
file structuring conventions.
If all output is to be sent to a file then one of the plotter, laser, postscript,
interleaf and framemaker devices can be used. These are opened and
closed with the commands:

Once a device has been opened the graphical output is sent, in addition to any
open display devices, to a file (plot_file, pixel_file, postscript_file, interleaf_file
and framemaker_file respectively). The default files (which have no extension)
may be changed, prior to opening the device, by a command of the form:

It is important to close the device before leaving the KID session to ensure that
the correct termination commands are appended to the output file. It should also
be noted that all images sent to the file are superimposed.

Object Function
graphics interleaf, laser, plot, postscript, framemaker

> (define b0 p_block) -- define a block
> (b0 create) -- create it
> (graphics sketch ’b0; ar) -- sketch it
> (graphics laser "block.ln3") -- output the sketch to the file

block as a pixel file
> (graphics zoom 0.5) -- expand the view
> (graphics postscript "post.pst")

-- output the postscript commands for
the expanded view to the file post

> (graphics open_device ’<device_name>)
> (graphics close_device ’<device_name>)

> (graphics postscript_file "output.pst")
Kernel Interface Driver Manual 93

. .KID Graphics: Overview
94 Kernel Interface Driver Manual

12

. .

12Viewing Environment
and Definition
12.1 Introduction
The viewing environment is held in properties which are either inherited from the
graphics class or are defined locally. Defaults are provided for all graphics
classes.

view_to, view_from view_direction view_vertical,
perspective functions
These properties allow the user to define how the model is viewed. Examples of
the use of these properties, and their default values, are given below:

If graphics perspective is nil (the default), then,
� graphics view_direction is used instead of graphics view_from,

and

If graphics perspective is t, then’

� the view direction is the vector from the view_from point to the view_to
point.

view function
The following pre-defined view directions can be set using their associated
commands:

> (graphics view_to ’(0 0 0)) -- look at origin
> (graphics view_from ’(3000 1732 1999))

-- view from specified point
> (graphics view_direction ’(-0.3 -0.1732 -0.2))

-- define specific view direction
> (graphics view_direction)

-- returns current view direction ’-3.0 -0.1732 -0.2’
> (graphics view_vertical ’(0 0 1))

-- make Z axis vertical in view
> (graphics perspective nil) -- switch off perspective
Kernel Interface Driver Manual 95

. .Viewing Environment and Definition
12.2 Windowing

view_window_xmin/xmax/ymin/ymax
Windowing defines that area of the model image which is in view. The
“view_window_” functions are the most basic ones. There default settings are:

12.2.1 Using the cursor for redefining the window
The following functions provide an easier way to redefine the window by using
the cursor.

pick_window
When a picture has been drawn, “pick_window” enables the cursor for two picks,
to define a window diagonal.

pick_centre
pick_centre enables the cursor for a pick which defines the centre of the new
window. If more detail of the new window centre is required this operation can be
followed by a “zoom”. Be careful not to use “autowindow” immediately after these
commands, unless the new window is to be purposely overwritten.

> (graphics view ’top)
> (graphics view ’bottom)
> (graphics view ’left)
> (graphics view ’right)
> (graphics view ’front)
> (graphics view ’back)
> (graphics view ’trimetric)
> (graphics view ’isometric)

> (graphics view_window_xmin -100)
> (graphics view_window_xmax 100)
> (graphics view_window_ymin -100)
> (graphics view_window_ymax 100)

> (graphics sketch ’b0)
> (graphics pick_window) -- cursor enabled for two picks
> (graphics redraw)
96 Kernel Interface Driver Manual

. .Windowing
autowindow
It is possible to “autowindow” the view so that the window is set to the smallest
size possible for the objects which are currently drawn.

redraw
“redraw” clears the screen and draws the current GRA graphics data structure.
This means that if the graphics drawing list is altered, followed by a “redraw”, the
GRA graphics data is output, not reflecting the change in the drawing list.

ar
“ar” is the combination of an “autowindow” and a “redraw”.

or

centre
The “centre” function uses a model space pointer to specify the centre of the
current view window. To refresh the view, and therefore see the view in relation
to the specified “centre”, it is necessary to do a “redraw”.

> (graphics sketch ’b0)
> (graphics pick_centre)
> (graphics zoom 2)
> (graphics redraw)

> (graphics sketch ’b0) -- b0 sketched with current view
> (graphics autowindow) -- no visible change
> (graphics redraw)

-- sketch of b0 with smallest possible
window

> (graphics ar) -- autowindow and redraw
> (graphics drawing_list ’(b0 b1)) -- drawing list changed
> (graphics redraw) -- but only b0 will be drawn

Note: Using “autowindow” on its own does not have any visible effect, although
it does altered the GRA viewing environment. Its effect is only visible after a
“redraw”.

> (graphics ske ’b0)
> (graphics centre ’(0 0 10); redraw)
Kernel Interface Driver Manual 97

. .Viewing Environment and Definition
zoom
The “zoom” function takes a real number as its argument. It changes the current
window sizes so that the image is magnified or reduced about the “centre” of the
current view window.

A factor greater than 1.0 magnifies the image on the screen.

To see the zoomed image it is necessary to refresh the screen using “redraw”.

12.3 View manipulation

pan_left/right/up/down
It is possible to change the view definition by altering the properties previously
described. However, a number of functions are provided to allow easy
manipulation of the view. The pan functions take a real number as their
argument. The effect is to move the edges of the window by the given distance in
the given direction.

rotate_left/right/up/down
The rotate functions also take a real number as their argument. They rotate the
viewing direction and the ‘from point’ about the image by the given amount. The
angle is specified in degrees.

12.4 Selecting a view
Only one view or graphics subclass can be active at a time, and all graphics
output are sent to that view until another one is selected. The view must first be
defined, then this view can be selected:

> (graphics zoom <factor>)
> (graphics redraw)

> (graphics pan_left <distance>)
> (graphics pan_right <distance>)
> (graphics pan_up <distance>)
> (graphics pan_down <distance>)

> (graphics rotate_left <angle>)
> (graphics rotate_right <angle>)
> (graphics rotate_up <angle>)
> (graphics rotate_down <angle>)
98 Kernel Interface Driver Manual

. .Clearing the screen and drawing the current view
12.5 Clearing the screen and drawing the
current view

clear
The function clear clears the graphics screen of the terminal, and empty the
GRA stream(s) used by the current view:

In addition to the clear function, use of the abbreviated forms of sketch and
hidden clear the screen before drawing the entity.

frame and axes functions
To display the limits of the current view on the screen, the “frame” function is
provided, “axes” draws axes in the current view.

Using these functions without any arguments draws a frame or axes in the view.
If an argument is given, this is interpreted as a logical value (t or nil). If the value
given is t (i.e. anything but nil) a frame or axes are automatically drawn when
ever the view is redrawn.

Object Function
graphics select

> (define view_x graphics)
> (view_x select)

Note: Selecting a view does not clear the screen, or draw the frame and axes.

Object Function
graphics clear, axes, frame

> (graphics clear)

> (graphics ske ’b0)
> (graphics hid ’b0)

> (graphics frame [<t or nil>])
> (graphics axes [<t or nil>])
Kernel Interface Driver Manual 99

. .Viewing Environment and Definition
12.6 Use of the drawing list

drawing_list
Each view has a drawing list property, e.g. view_1 drawing_list. This is
used to contain a list of the objects which have been drawn in this particular view.
Initially, the drawing list is empty, but when objects are rendered their names are
added to this list.

Some functions redraw all the items in the drawing list. If the view has no drawing
list itself, they look up the class tree until a non empty drawing list is found.
Therefore, one class may be used to hold the drawing list and its subclasses may
be views which are used to render the objects.
It is possible to add items to the drawing list without rendering them. This could
be used to create a sketch of a number of objects.

12.7 Enquiry
It is possible to enquire about a view:

> (define my_view graphics)
> (my_view select)
> (my_view drawing_list ’(b0 e1 f2))
> (my_view sketch) -- objects b0, e1 and f2 will now be drawn

Note: 1) The object which is the argument should be a list of KID objects, which
represent kernel items with tags, and it must be quoted (’) to avoid it being
evaluated.
2) graphics clear does not clear the drawing_list which is used for
“Picking”. Therefore, it is possible to pick objects from what appears to be a
clear display. The drawing_list must be reset independently.

> (graphics drawing_list ’(b0))-- drawing_list only contains b0
> (graphics drawing_list nil) -- empty the drawing_list

Object Function
graphics enquiries

> (view_x enquire) -- prints information about the view
100 Kernel Interface Driver Manual

13
13KID Rendering

. .
13.1 Introduction
The KID rendering functionality uses the rendering functions in Parasolid’s PK
interface. The KID rendering options have retained their six-character naming
convention (as used in the KI interface), but are applied to the options used by
the PK functions.
To render items in a given view, the view must be the current one, i.e. the last one
to be selected. The following functions are available.

13.1.1 Wire frame pictures

sketch
Using the function “sketch”, bodies, faces, edges and B-surfaces can be
sketched.

If the optional argument is not given, all the items in the drawing_list property
are rendered in the appropriate style. If an argument is given (which can be a
single object or a list of objects), a new drawing list is defined which contains only
these objects.
Another way to sketch objects is by the use of functions which are properties of
the object itself.

Object Function
graphics sketch

> (graphics sketch ’[<object>])

Object Function
topology sketch

> (define view_1 graphics)
> (view_1 sketch ’b0)
> (view_1 zoom 2)
> (view_1 redraw)
Kernel Interface Driver Manual 101

. .KID Rendering
This draws the object according to the current view and adds the object to the
drawing list of the current view, unless it is already there.

13.1.2 Hidden line pictures

hidden

If the optional argument is not given, all the items in the drawing_list property
are rendered in the appropriate style. If an argument is given (which can be a
single object or a list of objects), a new drawing list is defined which contains only
these objects.

13.1.3 Shaded pictures

shade
The procedure for opening an Xwindow for a shaded graphical display differs
from that described previously. When using the “shade” function the following
calls are used to open an Xwindow:

If the optional argument is not given, all the items in the drawing_list property
are shaded according to the given shading options. If an argument is given
(either a single object, or a list of objects), the drawing_list property is
redefined, and the given objects are shaded.

Object Function
graphics hidden

> (graphics hidden ’[<object>])

> (graphics open_device ’xcolour)
> (graphics shading_output [’device | ’file])

-- use ’device to output to the screen
and ’file to output to a file

Object Function
graphics shade

> (graphics shade ’[<object>])
102 Kernel Interface Driver Manual

. .Rendering options
13.1.4 Faceted pictures

facet

If the optional argument is not given, all the items in the drawing_list property
are faceted according to the given faceting options. If an argument is given
(either a single object, or a list of objects), the drawing_list property is
redefined, and the given objects are faceted and output through the GO.

13.2 Rendering options
For all of the rendering options the option can be called by either its long name
(as used in all the following option examples) or its code.

anti_aliasing (RROPAN)
This option controls the anti_aliasing of entities passed to the shade function.

If no argument is given, the current value of the anti_aliasing option is
returned. If an argument is given, it is interpreted as follows:

Note: Note that the shade function is only available on UNIX, it does not work
on NT.

Object Function
graphics facet

> (graphics facet ’[<object>])

> (graphics drafting t)
OR

> (graphics rropdr t)

> (graphics anti_aliasing [t | nil])

Value Description
t option RROPAN is set
nil option RROPAN is unset (default)
Kernel Interface Driver Manual 103

. .KID Rendering
background_colour (RROPBK)
This option controls the background colour that is passed to the shade function.

If no argument is given, the current value of the background colour option is
returned. If an argument is given, it is interpreted as follows:

If the option RROPBK is not set, the following defaults are used for background
color:

blend (RROPUB)
This option specifies that the rendering operation takes account of all unfixed
blends in the entity passed to the sketch function.

If no argument is given, the current value of the unfixed blend option is returned.
If an argument is given, it is interpreted as follows:

convexity (RROPCV)
This option controls the convexity of the facets, that are to be output as convex
polygons, by the facet function.

> (graphics background_colour [argument])

Value Description
list of three
values

option RROPBK is set with the given values (in the order
below)

anything else option RROPBK is unset (default)

Color Value
Red 0.0
Green 0.0
Blue 0.0

> (graphics blend [t | nil])

Value Description
t option RROPUB is set
nil option RROPUB is unset (default)
104 Kernel Interface Driver Manual

. .Rendering options
If no argument is given, the current value of convexity is used if it has been set;
otherwise a default is used. If an argument is given, it is interpreted as follows:

curve_tolerance (RROPCT)
This option controls the faceted representation by considering the curved edge
approximation of the entity that is passed to the sketch, facet and hidden
functions.

If no argument is given, the current values of the curve tolerances are used if they
have been set; otherwise defaults are used. If an argument is given, it is
interpreted as follows:

The curve tolerances are:

� Chord tolerance in model units
� Maximum chord length in model units
� Angular tolerance in radians

depth_modulation (RROPDM)
This option controls depth modulation of an entity that is passed to the shade
function.

> (graphics convexity [<anything but nil OR nil>])

Value Description
t option RROPCV is set
nil option RROPCV is unset (default)

> (graphics curve_tolerance [argument])

Value Description
list of three
values

option RROPCT is set with the given values (in the order
below)

anything else option RROPCT is unset (default)

> (graphics depth_modulation [argument])
Kernel Interface Driver Manual 105

. .KID Rendering
If no argument is given, the current value of the depth modulation option is
returned. If an argument is given, it is interpreted as follows:

drafting (RROPDR)
This option controls the output of drafting-style lines of entities that are passed to
the hidden function by distinguishing between lines which are blocked by other
lines and those which are obscured by other faces of the body.

If no argument is given, the current state of the drafting-style lines option is
returned. If an argument is given, it is interpreted as follows:

edge_data (RROPED)
This option controls the drawing of edge data of the entities passed to the sketch
function.

If no argument is given, the current state of the edge data option is returned. If an
argument is given, it is interpreted as follows:

Value Description
list of one value option RROPDM is set with the given value
anything else but nil option RROPDM is set with the value 0.3 (default)
nil option RROPDM is unset

> (graphics drafting [t | nil])

Value Description
t option RROPDR is set
nil option RROPDR is unset (default)

Note: The “drafting (RROPDR)” and “perspective (RROPPS)” options are
mutually exclusive and turn each other off.

> (graphics edge_data [t | nil])

Value Description
t option RROPED is set
nil option RROPED is unset (default)
106 Kernel Interface Driver Manual

. .Rendering options
edge_tags (RROPET)
This option controls output of the edge tag for those facet edges derived from
face edges for entities passed to the facet function.

If no argument is given, the current values of the edge tags are used if they have
been set; otherwise defaults are used. If an argument is given, it is interpreted as
follows:

face_colour (RROPFC)
This option controls the face colour of entities passed to the shade function.

If no argument is given, the current value of the face colour option is returned. If
an argument is given, it is interpreted as follows:

If the option RROPFC is not set, the following defaults are used for face color:

facet_infinite (RROPFI)
This option controls the non-generation of facets for faces which can quickly be
identified as back-facing in the view from infinity direction of entities passed to the
facet function.

> (graphics edge_tags [t | nil])

Value Description
t option RROPET is set
nil option RROPET is unset (default)

> (graphics face_colour [argument])

Value Description
list of three
values

option RROPFC is set with the given values (in the order
below)

anything else option RROPFC is unset (default)

Color Value
Red 1.0
Green 1.0
Blue 1.0
Kernel Interface Driver Manual 107

. .KID Rendering
If no argument is given, the current state of the facet_infinite option is
returned. If an argument is given, it is interpreted as follows:

facet_minimum_size (RROPMF)
This option controls the minimum size of the facets of entities passed to the facet
function.

If no argument is given, the current value of the minimum facet size, if set, is
returned. If an argument is given, it is interpreted as follows:

facet_perspective (RROPFP)
This option controls the non-generation of facets for faces which can quickly be
identified as back-facing in the perspective view direction of entities passed to
the facet function.

If no argument is given, the current state of the facet_perspective option is
returned. If an argument is given, it is interpreted as follows:

> (graphics facet_infinite [t | nil])

Value Description
t option RROPFI is set
nil option RROPFI is unset (default)

Note: The “facet_infinite (RROPFI)”,“facet_perspective (RROPFP)” and
“vertex_matching (RROPVM)” options are exclusive and turning one on turns
the others off.

> (graphics facet_minimum_size [argument])

Value Description
n option RROPMF is set with the given value
anything else option RROPMF is unset (default)

> (graphics facet_perspective [t | nil])
108 Kernel Interface Driver Manual

. .Rendering options
facet_size (RROPFS)
This option controls the faceted representation of entities passed to the facet
function by considering the size of the facet.

If no argument is given, the current values of the facet size tolerances are used
if they have been set; otherwise defaults are used. If an argument is given, it is
interpreted as follows:

The facet size tolerances are:

� Maximum number of sides per facet
� Maximum width of facet in model units

facet_strips (RROPTS)
This option controls the output of faceted data of entities passed to the facet
function to be in “triangle strips” which form triangle facets.

If no argument is given, the current value of the facet_strips option is
returned. If an argument is given, it is interpreted as follows:

Value Description
t option RROPFP is set
nil option RROPFP is unset (default)

Note: The “facet_infinite (RROPFI)”,“facet_perspective (RROPFP)” and
“vertex_matching (RROPVM)” options are exclusive and turning one on turns
the others off.

> (graphics facet_size [argument])

Value Description
list of two
values

option RROPFS is set with the given values (in the order
below)

anything else option RROPFS is unset (default)

> (graphics facet_strips [n | nil])
Kernel Interface Driver Manual 109

. .KID Rendering
first_derivatives (RROPD1)
This option controls the output of first derivatives data for entities passed to the
facet function.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

hierarchical (RROPHR)
This option controls the output of hierarchical data for entities passed to the
hidden function by outputting the data for the invisible part of partial visible lines.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

hierarchical_no_geom (RROPHN)
As for the hierarchical option, this option controls the output of hierarchical data
for entities passed to the hidden function by outputting the data for the invisible
part of partial visible lines, but omitting any geometry segments.

Value Description
n option RROPTS is set with the given maximum number of facets in

a strip
nil option RROPTS is unset (default)

> (graphics first_derivatives [t | nil])

Value Description
t option RROPD1 is set
nil option RROPD1 is not set (default)

> (graphics hierarchical [t | nil])

Value Description
t option RROPHR is set
nil option RROPHR is not set (default)

> (graphics hierarchical_no_geom [t | nil])
110 Kernel Interface Driver Manual

. .Rendering options
If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

hierarchical_parametrised (RROPHP)
As for the hierarchical option, this option controls the output of hierarchical data
for entities passed to the hidden function by outputting curve parameters with
visibility segments.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

holes_permitted (RROPHO)
This option controls whether or not facets passed to the facet function are
represented with holes in their interiors.

If no argument is given, the current values of the holes permitted are used if they
have been set; otherwise defaults are used. If an argument is given, it is
interpreted as follows:

ignore_loops (RROPIL)
This option specifies those loops that are to be ignored when faceting a body.

Value Description
t option RROPHN is set
nil option RROPHN is not set (default)

> (graphics hierarchical_parametrised [t | nil])

Value Description
t option RROPHP is set
nil option RROPHP is not set (default)

> (graphics holes_permitted [t | nil])

Value Description
t option RROPHO is set
nil option RROPHO is not set (default)
Kernel Interface Driver Manual 111

. .KID Rendering
If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

Selecting a loop to ignore:

> (graphics ignore_loops 56) -- ignore a specified loop
> (graphics ignore_loops ’(56 70 92) -- or a list of loops
> (graphics ignore_loops ’loo_object) -- or a loo (loop) object

Value Description
tag/list of tags faceting ignores the specified loop/s
tag of loo (loop)
object

faceting ignores the loops in the loo object – if the loo object
is updated, the next faceting call takes note of this

nil option RROPIL is not set (default)

Note: It may be difficult to select the loops as there are few functions available
for loops in KID. The following example may help.

(defun intersection (a b)
 (cond
 ((null a) nil)
 ((member (car a) b) (cons (car a)

(intersection (cdr a) b)))
 (t (intersection (cdr a) b))))
(modeller start)
(graphics open_device ’x)
((define b0 p_block) create)
((define c0 p_cylinder) height 20; point ’(0 0 5);
direction ’(0 1 1); radius 2; create)
((define t0 p_torus) point ’(0 5 10);
direction ’(1 0 0); minrad 1; majrad 6; create)
(b0 subtract ’c0)
(b0 subtract ’t0)
(graphics silhouette t; sketch ’b0;ar)
((define f0 face) pick_from b0;

pick_using ’(eq (f0 enquire ’type) ’cylindrical))
((define e0 edge) pick

’((222.09889296390998 128.22734466248986
 155.80355543323157)

(-0.75000326975537235 -0.43300948728521493
-0.49999787927274819)))

((define loop_0 loo) tag (intersection
((define loop_1 loo) pick_from f0)
((define loop_2 loo) pick_from e0)))

(graphics ignore_loops ’loop_0; clear; facet ’f0; ar)
112 Kernel Interface Driver Manual

. .Rendering options
image_smoothness (RROPIS)
This option controls whether the hidden function calculates the smoothness of
edges in the image, i.e. whether the faces either side of the edge are tangent. If
an edge is smooth, the hidden function also calculates whether or not it is
coincident with a silhouette. The example KID Frustrum does not draw smooth
edges which are not coincident with silhouettes if (graphics smooth t) is
selected, so for example mergeable edges are omitted from hidden line pictures.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

internal_edges (RROPIE/N)
This option controls the output data for an edge that is passed to the hidden and
sketch functions by specifying whether or not it is an internal edge.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

invisible (RROPIV)
This option controls the output for hidden lines passed to the hidden function, so
that hidden lines can be rendered in a dotted line-style.

> (graphics smooth [t|nil])

Value Description
t options RROPIS and RROPDS are set
nil options RROPIS and RROPDS are not set (default)

> (graphics internal_edges [t | nil])

Value Description
t option RROPIE/N is set
nil option RROPIE/N is not set (default)

Note: This turns both RROPIN and RROPIE on for the hidden and sketch
relevant functions. To switch the options individually use (graphics rropie) and
(graphics rropin).
Kernel Interface Driver Manual 113

. .KID Rendering
If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

l ights function
This function controls the light sources that are passed to the shade function.

The argument given is a list containing a number of lists, each defining a light
source. If no argument is given, the current list of light sources is returned. If an
argument is given, the current list of light sources is set to the value of the
argument.

A number of pre-defined light sources are available as follows:

> (graphics invisible [t | nil])

Value Description
t option RROPIV is set
nil option RROPIV is not set (default)

> (graphics lights [<list of lists each containing seven
values>])

Value Description
ambient_high (3 0.75 0.75 0.75 1 1 1)
ambient_med (3 0.50 0.50 0.50 1 1 1)
ambient_low (3 0.25 0.25 0.25 1 1 1)
lightx_high (1 0.75 0.75 0.75 1 0 0)
lightx_med (1 0.50 0.50 0.50 1 0 0)
lightx_low (1 0.25 0.25 0.25 1 0 0)
lighty_high (1 0.75 0.75 0.75 0 1 0)
lighty_med (1 0.50 0.50 0.50 0 1 0)
lighty_low (1 0.25 0.25 0.25 0 1 0)
lightz_high (1 0.75 0.75 0.75 0 0 1)
lightz_med (1 0.50 0.50 0.50 0 0 1)
lightz_low (1 0.25 0.25 0.25 0 0 1)
lightxy_high (1 0.75 0.75 0.75 1 1 0)
lightxy_med (1 0.50 0.50 0.50 1 1 0)
114 Kernel Interface Driver Manual

. .Rendering options
The default lights are ambient_high, lightxz_med and lightyz_low

no_fitting (RROPNF)
This option controls the way facets fit together at the edges of adjacent faces
when they are passed to the facet function.

If no argument is given, the current values of no fitting are used if they have been
set; otherwise defaults are used. If an argument is given, it is interpreted as
follows:

nurbs_curves (RROPNC)
This option controls the output of NURBs curves passed to the sketch and hidden
functions by allowing the NURB curve data to be presented to the Graphical
Output in B-spline form.

lightxy_low (1 0.25 0.25 0.25 1 1 0)
lightxz_high (1 0.75 0.75 0.75 1 0 1)
lightxz_med (1 0.50 0.50 0.50 1 0 1)
lightxz_low (1 0.25 0.25 0.25 1 0 1)
lightyz_high (1 0.75 0.75 0.75 0 1 1)
lightyz_med (1 0.50 0.50 0.50 0 1 1)
lightyz_low (1 0.25 0.25 0.25 0 1 1)
lightxyz_high (1 0.75 0.75 0.75 1 1 1)
lightxyz_med (1 0.50 0.50 0.50 1 1 1)
lightxyz_low (1 0.25 0.25 0.25 1 1 1)

> (graphics no_fitting [t | nil])

Value Description
t option RROPNF is set
nil option RROPNF is unset (default)

> (graphics nurbs_curves [argument])

Value Description
Kernel Interface Driver Manual 115

. .KID Rendering
If no argument is given, the current setting is returned. If an argument is given, it
is interpreted as follows:

para_hatch (RROPPA)
This option controls the hatching of composite B-surfaces passed to the sketch
and hidden functions. Two parameters are given to the option that specify the
spacing between hatchlines in both the u and v directions.

The faces are not actually hatched by this command. They appear hatched in the
next graphics command providing the global graphics rendering switches are set:

Hatching is disabled by using the argument nil.

parameter_information (RROPPI)
This option controls the output of parameter information for entities passed to the
facet function.

Value Description
anything but nil option RROPNC is set
nil option RROPNC is unset (default)

Note: The “nurbs_curves (RROPNC)” and “parametric_curves (RROPPC)”
options are mutually exclusive and turn each other off.

> (f0 para_hatch) -- enquire face hatching
> (f0 para_hatch <space>) -- set both u and v para spacing
> (f0 para_hatch <u> <v>) -- set both independently

> (graphics para_hatch t)

> (graphics para_hatch nil)

> (graphics parameter_information [t | nil])
116 Kernel Interface Driver Manual

. .Rendering options
If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

parametric_curves (RROPPC)
This option controls the output of B-curves (Bezier curves) passed to the sketch
and hidden functions by allowing the B-curve data to be presented to the
Graphical Output in Bezier form or as poly lines.

If an argument is given, it is interpreted as follows:

perspective (RROPPS)
This option controls the whether or not the entities passed to the sketch, hidden,
sketch and shade functions are created in a perspective view.

If no argument is given, the current state of this option is returned. If an argument
is supplied, it is interpreted as follows:

Value Description
t option RROPPI is set
nil option RROPPI is not set (default)

> (graphics parametric_curves [argument])

Value Description
anything but nil option RROPPC is set
nil option RROPPC is unset (default)

Note: The “nurbs_curves (RROPNC)” and “parametric_curves (RROPPC)”
options are mutually exclusive and turn each other off.

> (graphics perspective [t | nil])

Value Description
t option RROPPS is set
nil option RROPPS is not set (default)
Kernel Interface Driver Manual 117

. .KID Rendering
planar_hatch (RROPPH)
This option controls the hatching of planar surfaces passed to the sketch and
hidden functions. It takes an argument, which if set to nil, disables planar
hatching, otherwise a list of 4 parameters is required:

The faces are not actually hatched by this command. They appear hatched in the
next graphics command providing the global graphics rendering switches are set:

Planar hatching is disabled by using the argument nil:

planarity_tolerance (RROPPT)
This option controls the planarity tolerance of facets passed to the facet function.

If no argument is given, the current values of the surface tolerances are used if
they have been set; otherwise defaults are used. If an argument is given, it is
interpreted as follows:

The planarity tolerances are:
� distance tolerance in model units
� angular tolerance in radians

Note: The “drafting (RROPDR)” and “perspective (RROPPS)” options are
mutually exclusive and turn each other off.

> (f0 planar_hatch) -- enquire face hatching
> (f0 planar_hatch <gap>)-- set hatching space (default Z dir)
> (f0 planar_hatch <gap> <direction>)

> (graphics planar_hatch t)

> (graphics planar_hatch nil)

> (graphics planarity_tolerance [argument])

Value Description
list of two
values

option RROPPT is set with the given values (in the order
below)

anything else option RROPPT is unset (default)
118 Kernel Interface Driver Manual

. .Rendering options
radial_hatch (RROPRH)
This option controls the radial hatching of entities passed to the sketch and
hidden functions.

The argument set to nil disables radial hatching. For hatching on, a list of three
parameters is required:

The faces are not actually hatched by this command. They appear hatched in the
next graphics command providing the global graphics rendering switches are set:

Radial hatching is disabled by using the argument nil:

regional (RROPRG)
This option controls the production of regional data for all visible edges and
silhouettes passed to the hidden function.

If no argument is given, the current state of this option is returned. If an argument
is supplied, it is interpreted as follows:

regional_attribute (RROPRA)
This option controls the controls the creation of regional data for all visible edges
and silhouettes adjacent to any face with regional-data that are passed to the
hidden function.

> (f0 radial_hatch) -- enquire face hatching
> (f0 radial_hatch <gap> -- and angle around spine
> (f0 radial_hatch <gap> <ang1> <ang2>)

-- and angle about spine

> (graphics radial_hatch t)

> (graphics radial_hatch nil)

> (graphics regional [t | nil])

Value Description
t option RROPRG is set
nil option RROPRG is not set (default)

> (graphics regional_attribute [t | nil])
Kernel Interface Driver Manual 119

. .KID Rendering
If no argument is given, the current state of this option is returned. If an argument
is supplied, it is interpreted as follows:

resolution
This function controls the pixel map that is passed to the shade function.

If no argument is given, the current resolution value is returned. If an argument is
given, the pixel map is set with values according to the argument as follows:

The pixel sizes are calculated automatically according to the resolution (e.g. 256
x 256) and the current window size. It is therefore best to sketch the object(s),
autowindow, redraw and then shade.

second_derivatives (RROPD2)
This option controls the output of first derivatives data for entities passed to the
facet function.

Value Description
t option RROPRA is set
nil option RROPRA is not set (default)

> (graphics resolution [argument])

Value Description
very high 512 512 pixel_size_x pixel_size_y 256 256
high 256 256 pixel_size_x pixel_size_y 128 128 (default)
medium 128 128 pixel_size_x pixel_size_y 64 64
low 64 64 pixel_size_x pixel_size_y 32 32
list of six values the pixel map is set with the given values
anything else 64 64 pixel_size_x pixel_size_y 32 32

> (graphics second_derivatives [t | nil])
120 Kernel Interface Driver Manual

. .Rendering options
If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

shade_file
This function controls the name of shade file output by the shade function.

If no argument is given, the name of the current shade file is returned. If an
argument is given, the shade file is set to the value of the argument.

The default shade file “graphics.sig” is a binary file which consists of header
information, of which the first four arguments detail the offset of the pixel image,
followed by the run-length encoded RGB pixel intensities.

When required the following C program can be used to decode .sig files:

Value Description
t option RROPD2 is set
nil option RROPD2 is not set (default)

> (graphics shade_file [<’file_name>])
Kernel Interface Driver Manual 121

. .KID Rendering
Assume b0 to be a sphere with a transparency attribute attached to its face, and
b1 to be a large cube. b0 lies in front of b1:

#include <stdio.h>
typedef struct { int a;

int b;
int x;
int y;

} header_t;
typedef struct { double red;

double green;
double blue;
int count;

} run_t;
main (argc, argv)
int argc;
char * argv[];
{
run_t run;
header_t header;
/*Read header*/
fread(&a, sizeof(int), 1, stdin);
fread(&b, sizeof(int), 1, stdin);
fread(&x, sizeof(int), 1, stdin);
fread(&y, sizeof(int), 1, stdin);
printf("HEADER %d %d x=%d, y=%d\n",

header.a,header.b,header.x,header.y);
printf("COUNT RED GREEN BLUE\n");
while (fread(&run, sizeof(run_t), 1, stdin) > 0)

{
printf("%-6d %-8g %-8g %-8g\n",
run.count, run.red, run.green, run.blue);

}
}

> (graphics select)
> (graphics anti_aliasing t)
> (graphics surface_reflection ’(0.99 0.00 0.01 0.10 20))
> (graphics depth_modulation ’(0.75))
> (graphics face_colour ’(1 0 0))
> (graphics background_colour ’(0 0 1))
> (graphics translucence t)
> (graphics resolution ’very_high)
> (setq lightxz_red ’(1 0.75 0.00 0.00 1 0 1))
> (setq lightyz_blue ’(1 0.00 0.00 0.50 0 1 1))
> (graphics lights

(list ambient_high lightxz_red lightyz_blue))
> (graphics shade_file "shade_file.pix")
> (graphics shade ’(b0 b1))
122 Kernel Interface Driver Manual

. .Rendering options
silhouette (RROPSI)
This option controls the creation and labelling of silhouette lines for entities
passed to the sketch function.

If the optional argument is not given, silhouette curves are drawn in the current
drawing list only. If the optional argument is set to t, silhouettes are drawn in
every rendering operation.

The blend option controls unfixed blend surfaces rendering. If set to t, they are
included in the next draw. Integers given as arguments can be used in several
ways:

silhouette_density (RROPSD)
This option controls the silhouette density output for entities passed to the facet
function.

If no argument is given, the current value of the silhouette density option is
returned. If an argument is given, it is interpreted as follows:

The five values represent the following properties:

� the first three values define the view direction
� the fourth defines the angular tolerance
� the fifth defines the chordal tolerance

> (graphics silhouette [t | nil])

> (graphics blend 1) -- draw as attributes specify
OR

> (graphics blend t) -- exactly equivalent
> (graphics blend 2) -- only draw blend boundaries
> (graphics blend ’(3 n))

-- where n is set to rib spacing draw boundaries and
overwrite rib attribute if different

> (graphics silhouette_density [argument])

Value Description
list of five values option RROPSD is set with the given values
nil option RROPSD is unset (default)
Kernel Interface Driver Manual 123

. .KID Rendering
smooth_edges (RROPSM)
This option controls whether the sketch function calculates the smoothness of
edges in the image, i.e. whether the faces either side of the edge are tangent.

If no argument is given, the current state of this option is returned. If an argument
is given it is interpreted as follows:

smooth_edges_do_not_block (RROPDS)
This option controls whether or not the hidden function allows smooth edges
which are not coincident with silhouettes to occlude other lines in drafting mode.
As the KID Example Frustrum does not draw smooth edges if (graphics smooth)
is selected, then this option should also be selected with it. The option ensures
that the situation where a smooth edge occludes another but then does not itself
get drawn cannot occur.

The option is automatically selected when (graphics smooth) is selected.
You probably only need to control it independently of (graphics smooth)
when the frustrum is designed to draw smooth edges in a different line style
rather than omitting them completely, for example.

surface_reflection (RROPSF)
This option controls the surface reflectivity of entities passed to the shade
function.

> (graphics smooth_edges [t | nil])

Value Description
t option RROPSM is set
nil option RROPSM is not set (default)

> (graphics smooth_edges_do_not_block [t | nil])

Value Description
t option RROPDS is set
nil option RROPDS is not set (default)

> (graphics surface_reflection [argument])
124 Kernel Interface Driver Manual

. .Rendering options
If no argument is given, the current value of the surface reflectivity option is
returned. If an argument is given, it is interpreted as follows:

The five values represent the following properties, if the option is not set, the
defaults shown are used.

surface_tolerance (RROPST)
This option controls the surface tolerance of entities passed to the facet function
by considering the approximation to the surface.

If no argument is given, the current values of the surface tolerances are used if
they have been set; otherwise defaults are used. If an argument is given, it is
interpreted as follows:

The surface tolerances are:

� distance tolerance in model units
� angular tolerance in radians

Value Description
list of five
values

option RROPSF is set with the given values (in the order
below)

anything else option RROPSF is unset (default)

Property Default
Coefficient of specular reflection 0.90
Proportion of colour in highlights 0.00
Coefficient of diffuse reflection 0.60
Coefficient of ambient reflection 0.25
Reflection power 20

> (graphics surface_tolerance [argument])

Value Description
list of two
values

option RROPST is set with the given values (in the order
below)

anything else option RROPST is unset (default)
Kernel Interface Driver Manual 125

. .KID Rendering
transform (RROPTR)
This option controls the transformed positions of all entities passed to the sketch,
hidden, shade and facet functions.

An example of applying a transform when rendering:

When using the above sequence of commands, if there are many entities in the
drawing list, but only one transform is supplied, then the transform list is
replicated to ensure that there are an equal number of transforms as entities. At
all times the list of transforms must match the list of entities.

translucence (RROPTL)
This option controls the translucent rendering of those faces passed to the shade
function that have a specifying attribute attached.

If no argument is given, the current value of the translucence option is returned.
If an argument is given, it is interpreted as follows:

vertex_matching (RROPVM)
This option ensures that there are no gaps along the model edges and that along
these edges there are no facet vertices which are interior to an adjacent facet
edge in the entity that is passed to the facet function.

If no argument is given, the current value of the vertex_matching option is
returned. If an argument is given, it is interpreted as follows:

> (graphics transform [argument])

> ((define t0 p_translation) direction ’(0 0 1);
distance 2; create)

> ((define b0 p_block) create)
> (graphics ske ’b0; ar; transform ’t0; sketch; ar)

> (graphics translucence [t | nil])

Value Description
t option RROPTL is set
nil option RROPTL is not set (default)

> (graphics vertex_matching [t | nil])
126 Kernel Interface Driver Manual

. .Rendering options
vertex_normals (RROPVN)
This option allows the surface normal to be output at every facet vertex in the
entity passed to the facet function.

If no argument is given, the current value of the vertex_normals option is
returned. If an argument is given, it is interpreted as follows:

viewport (RROPVP)
This option attempts to render those bodies/faces which are inside or partly
inside the supplied viewport.

If no argument is given, the default viewport is used in which the full image is
rendered. If an argument is given, it is interpreted as follows:

Value Description
t option RROPVM is set
nil option RROPVM is unset (default)

Note: The “facet_infinite (RROPFI)”,“facet_perspective (RROPFP)” and
“vertex_matching (RROPVM)” options are exclusive and turning one on turns
the others off.

> (graphics vertex_normals [t | nil])

Value Description
t option RROPVN is set
nil option RROPVN is unset (default)

> (graphics viewport [argument])
> (graphics viewport) --- returns the current viewport

Value Description
t option RROPVP is set
nil option RROPVP is unset (default)
list of 15 doubles sets the viewport
’box create a viewport for the boxes of all the items in the

current drawing list
Kernel Interface Driver Manual 127

. .KID Rendering
Whenever the viewport is turned ON (by either of the three relevant options), the
view is recalculated after each “zoom” or “autowindow”.
128 Kernel Interface Driver Manual

14
14Picking

. .
14.1 Introduction
Assemblies, bodies, points, edges, faces, vertices, curves and surfaces can be
picked from the screen or directly from other entities:
� an assembly can be picked from an assembly
� a body can be picked from an assembly or body
� points, edges, faces, vertices, curves and surfaces can be picked from

themselves or entities higher in the structure

Picking makes a connection between the KID object and the tag of the kernel
item.

14.2 Picking from the screen

pick
To pick an item from the screen, the command pick is used. Initially the user has
to define the type of entity which is to be picked from the items displayed on the
screen. The command:

produces a cursor on the screen, which can then be positioned over the entity
(face, edge, body, etc.) which is to be picked. Pressing an appropriate key
records the tag or coordinates for the pick. In the case of topological items further
calls to (<entity> pick) allow further entities of the same type to be picked
and added to the tag list of <entity>.

> (<entity> pick)

Object Function
entity pick

> (b0 sketch) -- sketch the body
> (define f1 face) -- define the object
> (f1 pick) -- puts up the moveable crosswires -

press any key to pick the item
> (f1 sketch) -- now the object can be used
Kernel Interface Driver Manual 129

. .Picking
pick is also a function of p_points, and can be used to pick coordinate sets
from the screen in image space, or directly by giving an optional argument of a
set of coordinates. This is described in the section “Using p_points to create a
p_profile”. The function pick can pick indirectly from the screen when used with
two optional arguments.

The pick can only be made from a graphics view, so that if a model is not drawn
the pick cannot be made. The entity to be picked must first be defined.
To assist the above operations the commands pick2, and pick3 are used, these
commands expect multiple picks from the screen to be made.

Using p_points to create a p_profile
The primitive p_points can be used with the function “pick” to build a set of
coordinates in the image plane. The p_points object must first be defined, and
the cursor enabled by the “pick” function. A series of points can be picked in the
image plane, by pressing an appropriate key, and the sequence terminated by
picking a previously picked point. The item of class p_points can be used to
create a body from a profile using p_profile, which in turn can be swept or
swung to produce a new item.

The coordinates for b0 can also be given in either of the ways shown:

14.2.1 Pick with one argument
When “pick” is invoked with just one argument (the position vector of the eye
point in model space), the nearest entity to that point in the current view direction
is picked. Only a face facing toward the eye_point would be picked, assuming
a face had been defined.

> (define b0 p_block)
> (b0 x 10; y 10; z 10; create)
> (graphics sketch ’b0)
> (define p1 p_points) -- define p1 as p_points
> (p1 pick) -- enable cursor for picking coordinate

-- set in the image plane
> (define b1 p_profile)

> (b1 coordinate (p1 coordinate)) -- implicit coordinate list
> (b1 coordinate ‘((1 2 3) (...)))

-- explicit coordinate list
> (b1 create)

-- create kernel item (acorn, wire or sheet body)
130 Kernel Interface Driver Manual

. .Picking directly from other objects
14.2.2 Pick with two arguments
When both arguments are given, the implicit current view direction is overwritten
with the second argument, and entities are picked in an identical way. This mode
of use could be applied when an eye point and view direction are already known,
for example when taken directly from a journal file.

The “drawing_list” is not reset by the (graphics clear) command but needs to be
reset independently:

If the “drawing_list” is not reset then it is possible to pick from objects which no
longer appear in the display. Conversely, if “pick” is being used with arguments
then it is only necessary to add the entities to the drawing_list in order to pick
from them – there is no actual need to display them:

14.3 Picking directly from other objects
Picking can be done without an image on the screen. This type of logical picking
is achieved by successive qualification, for example by picking all the faces in a
body, then selecting only those with specified geometric properties. Three
functions can be used, “pick_from”, “pick_using” and “pick_node”.

pick_from
“pick_from” collects all items of a particular type from an object below the entity
class. The equivalent statement might be “all edges in the body”. “pick_from”

> (f1 pick ‘(200 200 200) ‘(1 1 1))

Note: The “pick” command actually uses the graphics “drawing_list” to
determine which entities have been selected.

> (graphics drawing_list nil)

> (define b0 p_block) -- define a p_block
> (b0 create) -- create the block
> (graphics drawing_list nil) -- empty the drawing_list
> (graphics add ’b0) -- add b0 to the drawing_list

(graphics drawing_list ’(b0)) would be
equivalent to the previous two commands

> (define f0 face) -- define a face
> (f0 pick ’(0 0 11)) -- pick the face nearest to ’(0 0 11)

in the current view_direction
Kernel Interface Driver Manual 131

. .Picking
purges any duplicates from the resulting tag list. Unlike “pick”, “pick_from” is not
cumulative, and a further call to it replaces the tags collected previously with a
new set.

pick_using
“pick_using” filters a set of items using a function as a qualifying clause. This is
equivalent to a statement such as “only those faces with spherical surfaces”. If
“pick_using” finds no items, an empty sublist is returned. A few examples of this
are shown next.

pick_node
“pick_node” uses the node identifier of an object to pick it from the body or KI
assembly to which it belongs.

Assume a body b1 has been created with some toroidal faces. The example
which follows shows how to find those faces which are toroidal and have a
specific major radius.

Object Function
entity pick_from, pick_using, pick_node

> (define b1 p_block)
> (b1 x 20; y 20; z 10; create) -- create block b1
> (define f1 face)
> (define e1 edge)
> (define e2 edge)
> (define v1 vertex)
> (f1 pick_from ’b1) -- f1 has a list of all 6 face tags
> (e1 pick_from ’b1) -- e1 has a list of all 12 edge tags
> (v1 pick_from ’b1) -- v1 has a list of all 8 vertex tags
> (f1 pick_using ’(f1 clash ’(0 0 0)))

-- f1 will now only possess tags of faces which
contain the point ’(0 0 0) i.e. 1 tag only

> (e1 pick_using ’(e1 clash ’(10 10 0)))
-- e1 will now only possess tags of edges which

contain the point ’(10 10 0) i.e. 3 tags
> (v1 pick_using t) -- v1 tag list will remain unchanged

as condition is always true
132 Kernel Interface Driver Manual

. .Picking directly from other objects
The next example shows how the top face of a block can be picked without using
the cursor, so that a new surface can be exchanged for this one using tweak.

If pick_using finds no items an error message is returned, e.g.

and the existing list is left unaltered.

Using a list of tags to manipulate an object
Some KID functions result in the tag property of an entity having a LISP list of
tags. An example of this is the function pick_from. It is often possible to
manipulate an object with a list of tags using the same functions as if it had a
single tag. This facility is not provided by all KID functions.

> (define f1 face)
> (f1 pick_from b1) -- f1 will contain all faces in b1
> (f1 pick_using ’(eq (f1 enquire ’type) ’toroidal))
> (f1 pick_using ’(eq (f1 enquire ’majrad) 10.0))
> (f1 pick_using ’(equal (f1 enquire ’point) ’(0.0 0.0 0.0)))

-- f1 will now only contain toroidal faces with a
major radius of 10.0, and axis point at the origin

NOTE: >eq< only works for atoms >equal< for lists and atoms

> (define b1 p_block)
> (b1 x 10;y 10;z 10;create)
> (face help tweak) -- for information on how to tweak a face
> (define f1 face)
> (f1 pick_from ’b1) -- f1 now contains all 6 faces of b1
> (f1 pick_using ’(f1 clash ’(0 0 10)))

-- f1 is now the top face of b1
> (p_planar help create) -- information
> (define s1 p_planar)
> (s1 point ’(0 0 50); direction ’(0 0 1); create)

-- s1 is plane at Z = 50 parallel to XY plane
> (f1 tweak ’s1) -- this will raise the face up to the surface

s1, and now body b1 has the
dimensions x 1O, y 10, z 50

(error “f2; no match entity”)

> ((define f0 face) pick_node 34 ’b0)
> ((define f0 face) pick_node ’(34 45 56) ’b0)
> ((define c0 curve) pick_node ’(21 23 25) ’b0)
Kernel Interface Driver Manual 133

. .Picking
14.4 Picking vector points
A class p_points exists as a subclass of primitive. The class has a function
“pick” which allows the user to give a list of vector points as its argument. These
are held in the object’s coordinate property. The user can either supply the list as
an argument to pick, or can supply no argument and thus employ the cursor to
select the vector points. Consider the following examples:

This then prompts the user to select the list of points by moving the cursor in the
graphics frame with the arrow keys. Points are selected by moving to the desired
location and striking any key, the list is terminated when a key is struck without
the user having moved the cursor. The selected vector points are located on the
graphics viewing plane. (The viewing plane is a plane perpendicular to the
current view_direction passing through the current view_to point.)

No other functions are provided; p_points is intended only as a convenient
location for storing a list of coordinates.

> (define b1 p_block)
> (b1 x 10; y 20; z 10; create) -- create block b1
> (define f1 face)
> (f1 pick_from ’b1) -- f1 is a list of b1’s 6 faces
> (f1 pick_using ’(f1 clash ’(5 5 10)))

-- leave only those faces which clash with this point,
f1 now refers to a set of two faces from body b1

> (f1 enquire) --> information
> (f1 direction ’(10 9 8); move) -- this will move both faces

Object Function
p_points pick

> (define b0 p_points)
> (b0 help pick) --> information
> (b0 pick ’(0 0 0)) -- b0 is set to the origin
> (b0 coordinate) --> (0 0 0)
> (define b0 p_points)
> (b0 pick ’((0 0 0) (1 1 1) (2 2 2))) -- b0 is set to
> (b0 coordinate) --> ((0 0 0) (1 1 1) (2 2 2))

coordinate list
> (define b0 p_points)
> (b0 pick)
134 Kernel Interface Driver Manual

. .Picking an entity from an assembly
14.5 Picking an entity from an assembly
To pick from an assembly, first the assembly must be converted from a single
layer assembly to a list of bodies (changes the type of entity from an assembly to
a body).

assemble function
The inverse operation, to create the assembly, takes the part with one or more
tags and makes each an instance in an assembly, which can then be transmitted
as a single entity.

> (a0 disassemble) -- unpacks bodies from instances and
applies transforms; a0 is now a body

> (graphics ske a0)
> (define e0 edge)
> (e0 pick) -- pick the edge from the body a0 using the cursor

> (a0 tag)
> (100 174 279 1000)
> (a0 assemble) -- a0 is now an assembly
> (a0 transmit “part_name”)
Kernel Interface Driver Manual 135

. .Picking
136 Kernel Interface Driver Manual

15
15Fault Reporting in KID

. .
15.1 Introduction
One of KID’s important functions is as a medium in which to report back any
suspected faults in PARASOLID in a consistent and system (both hardware and
software) independent manner and in a form which makes it easy for the fault to
be investigated. If it is possible to demonstrate the absence or presence of the
fault using a KID journal file, there is the additional benefit that the KID journal file
can be incorporated into regression tests.

15.2 Fault types
In general, faults fall into two categories:

� Faults which generate an error message. These can normally be reproduced
with a journal or KID file.

� Faults which generate a visual error, or no system error message. These
require careful description and an accompanying picture, if appropriate, for
diagnosis.

15.3 Fault isolation and simplification
It is of considerable help if the user can isolate the fault occurrence to the
shortest possible KID journal file. In many cases it is possible to trim out
irrelevant operations that are not implicated in the fault and this should be done.
For example, if a fault is found in the process of building a large model, it may be
possible to reproduce the fault with a much simplified version of the model.

� The journal file should not contain all the operations necessary to create the
bodies involved in demonstrating the fault. These should be transmitted and
the transmit files sent along with the KID journal file, which should contain
appropriate receive statements:
Kernel Interface Driver Manual 137

. .Fault Reporting in KID
� Frequent use of (modeller mark) aids debugging.
� It helps to understand a fault, and therefore enables a quicker fix to be

produced, if the following is completed:
� whenever possible simplify the fault
� keep the KID journal file, that is required to reproduce the fault, as short

as possible

> (define b0 body)
> (b0 receive ”fault_body.xmt_txt”)
138 Kernel Interface Driver Manual

A
AKID Class Structure

. .
A.1 Introduction
This appendix gives the class tree of KID, and the functions which are available
for each class. The functions are described in detail elsewhere. The names of all
KID classes are reserved words within KID and should not be overwritten.

A.1.1 Modeller substructure
The class structure for KID, along with the class functions, appears on the
following pages. The notation to be adopted is highest order class to the extreme
left of the page, class property functions to the extreme right. Modeller is the root
class of the tree shown.
Kernel Interface Driver Manual 139

. .
KID

 C
lass Structure

140
K

ernel Interface D
river M

anual

bspline
metry
Class Function Description
modeller start start modeller

stop stop modeller
replicate copy properties and item
rename rename object
delete undefine object, delete item if one
enquire user help on objects
resabs returns linear model resolution
resang returns angular model resolution
mark sets rollback mark
roll rolls back kernel to last mark set
roll_class rolling back live KID objects

option bb bulletin board use
bb_user user fields bulletin option
bspline_io switches output parametrisations from bezier to
bspline_geometry sets B-curve/surface modeling to composite geo
check local checking switch
continuity_checking continuity checking
data_checking consistency checks for ATTGEO
enquire information on option settings
journal file for kernel output
logging enables rollback
parameter_checking parameter checking
self_checking self intersection checking
get_snapshot binary/text reception of a snapshot
save_snapshot binary/text saving of a snapshot

. .

K
ernel Interface D

river M
anual

141

sed in the solid
r remove many

gh tokens

ties

s

A.1.2 Entity substructure
The entity sub-structure contains all the topological and geometric attributes which are u
modeller. It contains everything from a single point to an assembly. Functions to modify o
of the features are also included in the entity sub-structure.

reset sets all options to STAMOD defaults
receive binary/text reception
transmit binary/text transmission
timing controls timing information
user_field set user field length
logging set logging type
logging_number set rollmark limit
logging_forward set forward logging
raise errors raise LISP error for Parasolid failures reported throu

entity (see section entity sub-structure)
primitive (see section primitive sub-structure)
xgraphics (see section xgraphics sub-structure)

Class Function Description

Class Function Description
entity pick picks items from screen

pick_from picks connected kernel enti
pick_using logical pick
pick_node uses node id to pick entity
include add entities to object
remove remove entities from object

transformable move translate transformable item

. .
KID

 C
lass Structure

142
K

ernel Interface D
river M

anual

s
 entity

w item
 item
h test
elected view
tem

 radius
iven radius

t or entity

rt

rt

Class Function Description

rotate rotate transformable item

transformation apply applies transformation to
topology sweep sweep item to create ne

swing swing item to create new
clash coordinate/topology clas
sketch add sketch of items to s
box box (return box vector) i
faces faces of entity
edges edges of entity
vertices vertices of entity
hidden hidden line entity
facet facet entity
shade shade entity
silhouette silhouette entity
fillet fillet all edges with given
chamfer chamfer all edges with g
imprint imprint tool on entity
min_distance closest approach to poin

instance
part transmit transmit part to file

receive receive part from file
state part state
key key of loaded part
remove_key clear key from loaded pa
mass compute mass of part
identify look up tag of named pa

. .

K
ernel Interface D

river M
anual

143

s

dies
rtices faces

y

xis

e

dies
assemble creates assembly from part
assembly disassemble break down into bodies

bodies list first level bodies
instances list first level instances
transforms list first level transforms
level flattens assembly

body check consistency check
intersect intersection of target/tool bo
merge remove redundant edges ve
section section body with surface
subtract subtract tool from target bod
unite unite tool with target body
blend_fix fix unfixed blends in body
regions regions of body
volume volume of body
cofg centre of gravity of body
area surface area of body
halve section through cofg along a
quarter two sections
reflect reflect body in planar surfac
mirror unite with mirror image
magnify scale body by factor
offset offset body distance
hollow hollow to given thickness
sew sew a collection of sheet bo

multiply shell

Class Function Description

. .
KID

 C
lass Structure

144
K

ernel Interface D
river M

anual

ed word)
,edges and

ces, edges or

en radii

pied faces
rom face
te new body

onical face(s)
iven surface
versed surface
nsforms

e

Class Function Description

feature
loo loop (loop is LISP reserv

single merge remove redundant faces
vertices

unfix detach geometry from fa
vertices

region
vertex fillet blend at vertices with giv
face check consistency check

delete_faces delete face from body
create_solid create new body with co
create_sheet create new sheet body f
remove_faces remove face(s) and crea
move move face(s)
rotate rotate face(s)
taper draft planar, cylindrical, c
tweak modify face surface to g
ntweak modify face surface to re
twefac modify faces by given tra
fix fit a surface to a face
hatch_enq enquire hatching attribut
planar_hatch get/set planar hatching
radial_hatch get/set radial hatching
para_hatch get/set parametric hatch
cofg centre of gravity of face
area surface area of face

. .

K
ernel Interface D

river M
anual

145

nds

tached
ace

ached

ched
d

ched
edge blend_check check blends
blend_enquire blend information
blend_remove remove unfixed blends
pick_blends picks edges with unfixed ble
length arc length of edge

geometry check consistency check
make_body create body from geometry
part part to which geometry is at

surface intersect intersects with supplied surf
parameterise parameters at position
deparameterise position at parameters
faces faces to which surface is att
uvbox surface parameter uvbox
nabx non-aligned box

curve parameterise parameter at position
deparameterise position at parameter
march list of points on the curve
edges edges to which curve is atta
fin fin to which curve is attache
interval curve parameter interval
nabx non-aligned box

point vertex vertex to which point is atta
associated attribute system_attribut

e
name

blend_v5
translucency

Class Function Description

. .
KID

 C
lass Structure

146
K

ernel Interface D
river M

anual

thing in KID, from

es.

Class Function Description

Description
A.1.3 Primitive substructure
The primitive sub-structure contains all the functions which are required to create any
single points, surfaces, solid objects, through to assemblies.

The create functions create primitive solids, curves, surfaces, assemblies and instanc

reflectivity
phull
plines
density
hatching
blend
colour

Class Function
primitive

p_transformable

p_geometry p_vector

p_surface p_offset create

p_spun create

p_swept create

p_toroidal create

p_spherical create

p_planar create

p_cylindrical create

p_conical create

p_unbounded_curve p_line create

p_ellipse create

. .

K
ernel Interface D

river M
anual

147

cks point sequence
 image plane

scribes bounded
rve on face

ply blend to edge

escription

p_circle create

p_intersection create

p_points pick pi
in

p_point

p_bounded_curve scribe in
cu

p_transformation p_general_transformation create

p_translation create

p_rotation create

p_reflection create

p_equal_scaling create

p_topology p_body p_sheet create

p_wire create

p_profile create

p_parasurf create

p_paracurve create

p_pyramid create

p_cylinder create

p_sphere create

p_torus create

p_prism create

p_cone create

p_block create

p_acorn create

p_instance create

p_assembly create

p_feature

p_associated p_attribute p_system_attribute p_blend apply ap

Class Function D

. .
KID

 C
lass Structure

148
K

ernel Interface D
river M

anual

n graphics they can

extracts blend info
from edge

Class Function Description
A.1.4 Graphics substructure
The class graphics is a subclass of xgraphics, so that if default values are changed i
be retrieved from xgraphics.

extract

p_fillet

p_chamfer

Class Function Description
xgraphics autowindow set window to minimum

clear clear current view
invisible switch for hidden lines
redraw redraw current view
ar autowindow and redraw
axes draw axes
frame draw frame
enquire graphics properties information
select select a view
sketch sketch all items in drawing list
blend draw unfixed blends
hidden hidden line view
silhouette draw silhouette curves
smooth blanks smooth edges
planar_hatch planar hatching
radial_hatch radial hatching

. .

K
ernel Interface D

river M
anual

149

s

para_hatch parametric surface hatching
perspective perspective view
zoom magnify by factor
pan_down view manipulation functions
pan_up
pan_left
pan_right
view_direction view direction
view_from eye point
view_to view point
view_vertical define vector as vertical in view
view_window_xmax functions to manipulate image extreme
view_window_ymax
view_window_xmin
view_window_ymin
pick_window
pick_centre

graphics

Class Function Description

. .KID Class Structure
150 Kernel Interface Driver Manual

B
BParasolid LISP Functions

. .
B.1 Introduction
This appendix gives a quick reference table summary of the Parasolid LISP
functions available in KID.

B.2 Arithmetic operators

Also: add1, sub1

B.3 Environment

integer real string list address function nil n-ary
plus * * * * *
difference * * * * *
times * * * * *
quotient * * * * *
and * * *
or * * *
band * *
bor * *
eq * * * * * * * *
equal * * * * * * * *
greaterp * * * * * * *
lessp * * * * * * *

new overwrite
set global local/global
setq global local/global
defun global local/global
defproc c c
Kernel Interface Driver Manual 151

. .Parasolid LISP Functions
Association & property lists: assoc, iassoc, plist, get, put, remprop

B.4 Monadic operators

Also: charp, subrp, fsubrp, listp, numberp, csubrp, cvarp, onep, zerop, minusp

B.5 List operators

trace trace
untrace trace
oblist global

new overwrite

integer real string list address function nil
atom * * * * * *
null * * * * * * *
not * * * * * * *
bnot *
abs * * * * *
minus * * * *
truncate * * *
character * *
chars * * * * *
ordinal * * * * *
explode * * * * *
implode *

atom list nil destructive index
car/cdr *
cons * *
list * * *
rplaca/d * *
last/-cdr *
reverse *
152 Kernel Interface Driver Manual

. .
B.6 Evaluation

B.7 I/O operators

append * *
flatten *
element * * *
member * * *
delete * *
subst * *
replicate * * *

atom list nil destructive index

Function Notes
errorset
eval/apply
quote/’
progn n-ary body
cond n-ary body: condition-(n-ary)expr. pairs
map/mapc
loop n-ary body
until/while n-ary body executed when condition true/false
catch/throw label, expr.

filehandle terminal prlist carr. return punctuation
open *
close *
eof *
getchar (*) def
readline (*) def
read (*) def
write0 * * *
write * * *
Kernel Interface Driver Manual 153

. .Parasolid LISP Functions
B.8 Time operators

B.9 System functions

prin * * *
princ * *
print * * * *
printc * * *
vdu * *
sprint (*) def * *
error * * *

filehandle terminal prlist carr. return punctuation

time&date cpu-time resettable
time/ctime/gctime * *
clock *
reset

info set exit re-run operating-system
help *
quit *
load *
messon/off * *
edit/sed
journal * *
* *
! escape character
-- end-of-line comment, skip fold
“..” (quote ..)
154 Kernel Interface Driver Manual

. .
B.10 System variables
Special symbols: nil, undefined, t, lambda

Also: blank, period, dollar

value use
f nil
lpar/rpar “(“ / “)”
cr newline

value use
special sprint: inhibit line breaks
decimalwidth io, ..: significant digits for real numbers
linewidth sprint: length of output line
whitespace times: token-ise string
Kernel Interface Driver Manual 155

. .Parasolid LISP Functions
156 Kernel Interface Driver Manual

C

. .

CError Codes in Parasolid
LISP
Code Description
1 too few arguments for system function
2 too many arguments for system function
3 identifier unsuitable for association list or environment
4 unable to open journal file
5 unsuitable value in linewidth or decimalwidth
6 dotted list terminated incorrectly
7 too few brackets in input file
8 identifier exceeds token length
9 compulsory formal parameter follows optional
10 too few arguments for expression
11 too many arguments for expression
12 argument not a list
13 argument not an atom
14 argument is null list
15 unsuitable argument type(s)
16 invalid argument value
17 divide by zero
18 missing or wrong file handle
19 no file open for handle
20 failed to open file
21 failed to close file
22 too many brackets in input file
23 unknown format
24 bad format in decode, encode or rplacv
25 bad pointer in decode
26 too few values to match format in encode or rplacv
27 value can not be coerced to format in encode or rplacv
Kernel Interface Driver Manual 157

. .Error Codes in Parasolid LISP
28 pointer to bad or zero length explicit format
29 too many values to match format in encode or rplacv
30 badly encoded argument to c function
31 argument(s) to c function too long for system
32 c function return format unknown
33 while or until used outside loop
34 no suitable label for long jump
35 no more ‘drone’-functions of suitable return format
36 condition not a pair
37 no true condition in conditional
38 c variable not found
39 c function not found
40 user function not found
41 system function not implemented
42 user error function called
43 system error: please report

Code Description
158 Kernel Interface Driver Manual

D

. .

DList of Parasolid LISP
Functions
D.1 PARASOLID LISP functions
This is the current list of PARASOLID LISP functions; they are reserved words
and must not be overwritten. Only a subset is of use to the KID user, and these
are given with a full description or reference in the following section.
For each identifier listed here there is a header indicating whether it is the name
of a function or a variable, and giving an indication of the arguments expected by
the function. The words Subr, Fsubr and Expr are used to mean:

The functions marked with an (*) are described (or additional explanation is
supplied) in the following section, all others are described in the ACORNSOFT
book “LISP on the BBC Microcomputer”.
In use, all of the functions described are used in the lower case form. The upper
case form has been used to visually clarify the function names within the text.

Subr: A built-in function which processes its arguments normally
Fsubr: A built-in function with special argument processing, e.g. it

guarantees to process arguments from left to right, or it sometimes
does not evaluate all of its arguments

Expr: A function defined in LISP, not in C

Note: (help <f/subr>) gives more information on any function.

Function Type
*ADD1 Expr
ADDRESS Variable
AND Fsubr
*ABS Subr
APPEND Subr
APPLY Fsubr
ASSOC Subr
Kernel Interface Driver Manual 159

. .List of Parasolid LISP Functions
ATOM Subr
BACK Variable
BAND Fsubr
BLANK Variable
BNOT Subr
BOR Fsubr
BYTE Variable
CALL Fsubr
CAR Subr
CATCH Fsubr
CDR Subr
CHAR Variable
CHARACTER Subr
CHARP Subr
CHARS Subr
CLOCK Subr
CLOSE Subr
COND Fsubr
CONS Subr
CFSUBRP Subr
CSUBRP Subr
CR Variable
CTIME Subr
CVARP Subr
DECIMALWIDTH Variable
DECODE Fsubr
*DEFUN Fsubr
DEFPROC Fsubr
DELETE Subr
DIFFERENCE Fsubr
*DIVIDE
DOLLAR Variable

Function Type
160 Kernel Interface Driver Manual

. .
DOUBLE Variable
EDIT Expr
ELEMENT Subr
ENCODE Fsubr
*ENTWINE
EOF Subr
EQ Fsubr
*EQUAL Fsubr
ERROR Subr
ERRORSET Fsubr
EVAL Subr
EXPLODE Subr
F Variable
*FILTER
FLATTEN Subr
FLOAT Variable
FSUBRP Subr
FUNCTION Variable
GCTIME Subr
GET Subr
GETCHAR Subr
GREATERP Fsubr
*HELP Fsubr
IMPLODE Subr
*INSERT
INT Variable
JOURNAL Subr
LAMBDA Special identifier
LAST Subr
LASTCDR Subr
LESSP Fsubr
*LET

Function Type
Kernel Interface Driver Manual 161

. .List of Parasolid LISP Functions
LINEWIDTH Variable
LIST Subr
LISTP Subr
*LOAD Subr
LOGICAL Variable
LOOP Fsubr
LPAR Variable
MAP Expr
MAPC Expr
MEMBER Subr
MESSOFF Subr
MESSON Subr
MINUS Subr
MINUSP Expr
NIL Special identifier
NOT Subr
NULL Subr
NUMBERP Subr
OBLIST Subr
ONEP Expr
OPEN Subr
OR Fsubr
ORDINAL Subr
PERIOD Variable
PLIST Subr
*PLUS Fsubr
POINTER Subr
PRIN Subr
PRINC Subr
PRINT Subr
PRINTC Subr
PROGN Fsubr

Function Type
162 Kernel Interface Driver Manual

. .
PROMPT Variable
PUT Subr
*QUIT Subr
QUOTE Fsubr
QUOTIENT Fsubr
READ Subr
READLINE Subr
RECLAIM Subr
*REMAINDER Expr
REMPROP Subr
*REPLACE
REPLICATE Subr
RESET Subr
REVERSE Subr
RPAR Variable
RPLACA Subr
RPLACD Subr
RPLACV Fsubr
SED Expr
*SELECT
SET Fsubr
SETQ Fsubr
SHORT Variable
SPECIAL Variable
SPRINT Subr
STRING Variable
STRUCT Subr/Variable
*SUB1 Expr
SUBRP Subr
SUBST Subr
T Special identifier
THROW Fsubr

Function Type
Kernel Interface Driver Manual 163

. .List of Parasolid LISP Functions
D.2 PARASOLID LISP function
descriptions

ABS – Subr

If x is numeric then the absolute value, |x|, of x is returned. If x is a string then the
lower-case string is returned. If x is a list then ABS returns its length:

TIME Subr
TIMES Fsubr
TRACE Fsubr
TRUNC Subr
UNDEFINED Special identifier
UNION Subr
UNTIL Fsubr
UNTRACE Fsubr
VDU Subr
VOID Variable
WHILE Fsubr
WHITESPACE Variable
WRITE Subr
WRITEO Subr
ZEROP Expr
* Subr
! Special character
“ <string> ” Special characters
-- Special characters
@ Special character

Function Type

(ABS x)

(ABS -4.5) = 4.5
(ABS ”Guten Morgen”) = ”guten morgen”
(ABS ’(a b c)) = 3
164 Kernel Interface Driver Manual

. .

ADD1
This function adds 1 and is equivalent to:

DEFUN – Fsubr

DEFUN is a convenient way of defining functions. None of the arguments are
evaluated. The use of DEFUN is exactly equivalent to

The value returned by DEFUN is the name of the function that has been defined.
The second argument (parameters) is a list of arguments and local variables that
the function uses. Any number of actions can be given for the function to carry
out.

Examples:

defines a function ADD2 by setting ADD2 to the value

defines a function PR_ADD2 with local variable Y (initialized to NIL).

defines a function INCR with optional parameter Y (default 1). Note: only
constant values may be used as defaults.

defines a function ERR with an optional parameter.

(plus x 1)

(DEFUN function-name parameters body ...)

(SETQ function-name)
’(LAMBDA parameters body ...))

(DEFUN ADD2 (X) (PLUS X 2))

(LAMBDA (X) (PLUS X 2)).
(DEFUN PR_ADD2 (X (Y)) (SETQ Y (PLUS X 2)) (PRINT Y) Y)

(DEFUN INCR (X (Y . 1)) (PLUS X Y))

(DEFUN ERR (MESS (SEV))
(PRINTC ”error encountered”)
(PRINTC MESS)
(COND ((NULL SEV) NIL) (T (PRINTC ”severity: ” SEV))))
Kernel Interface Driver Manual 165

. .List of Parasolid LISP Functions
defines a function MY_PRINT which receives its arguments unevaluated and in
a list.

DIVIDE
This function forces real division, for example:

and is equivalent to:

ENTWINE
This is a generalized function to join two lists assumed to be the same length
together pairwise with any binary function. The binary function is optional and
defaults to the list operator with two arguments.

General form:

Example:

EQUAL – Fsubr

The basic LISP function EQ compares two or more atoms for equality. When
applied to list structures it checks if the pointers to them are identical. EQUAL
compares list structures to see whether they have the same shape and the same
atoms as leaves. EQUAL may have been defined as:

(DEFUN MY_PRINT X
(LOOP
(WHILE X)
(PRIN1 (EVAL (CAR X)))
(SETQ X (CDR X))))

(divide x y)

(quotient (plus x 0.0) y)

(entwine LIST LIST <binary op>)

(entwine ’(a b c) ’(1 2 3)) => ((a 1) (b 2) (c 3))
(entwine ’(a b c) ’(1 2 3) ’cons)

=> ((a . 1) (b . 2) (c . 3))
(entwine ’(a b c) ’(1 2 3) ’plus) => (a1 b2 c3)

(EQUAL exp exp ...)
166 Kernel Interface Driver Manual

. .
FILTER
This function applies a selective filter to a list identifying those to keep by element
number. Positive indices count from the front, negative indices from the end.

Example:

HELP – Fsubr

HELP provides information on the state of the system, commands,the various
environments maintained (global, local, c, io and trace) and the values of
functions and variables. Without argument HELP catalogues all items for which it
can provide information. A second item or expression specifies the property in a
property list. Items may contain wildcard characters.

Examples:

INSERT
This a simple function which inserts the specified value into the list m as the nth
element. The abs of m is increased by one. It is assumed that:

(DEFUN EQUAL (A B) (COND
((EQ A B) T)
((OR (ATOM A) (ATOM B)) NIL)
((EQUAL (CAR A) (CAR B)) (EQUAL (CDR A) (CDR B)))
(T NIL)))

(filter ’(1 3 5 7) ’(a b c d e f)) => (a c e nil)
(filter ’(-1 -3 -5 -7) ’(a b c d e f)) => (f d b nil)
(filter 5 ’(a b c d e f)) => e
(filter -5 ’(a b c d e f)) => b
(filter 99 ’(a b c d e f)) => nil
(filter -99 ’(a b c d e f)) => nil

(HELP), (HELP item), (HELP exp),
(HELP item/expression item/expression)

(HELP cons) --- get information on system function cons
(HELP con*) --- list identifiers, functions

beginning with ’con’
(HELP fred) --- get environment and value of fred
(HELP fred *) --- list all properties of fred
(HELP *create) --- list all identifiers containing

create property
(HELP (eval ’handle)) --- get information on file handle

1 <= n <= ((abs m) + 1)
Kernel Interface Driver Manual 167

. .List of Parasolid LISP Functions
Example:

LET
LET takes any number of arguments. The first is interpreted as a list of variables
and initializations, the rest as forms to be evaluated. The variables list contains
atoms or lists of two items. Atoms are variable names to be initialized to nil. The
first element of a list is a variable name, the second its initialization value which
is evaluated.

Example:

LOAD – Subr

The argument to LOAD should be the name of a file. LOAD reads the file and
evaluates the LISP expressions in it. The value of LOAD is the value of the last
expression in the file or UNDEFINED if an unexpected end of file was
encountered. If the file is not found an attempt is made to open a system file of
the same name. The second argument is optional and when provided may be
one of:

A third, optional argument is an error handler to be executed if an error occurs
during loading. if the handler returns NIL then loading of the file is abandoned,
which is also the default for LOAD.

(insert 1 ’(a b c d) ’h) => (h a b c d)
(insert 5 ’(a b c d) ’h) => (a b c d h)
(insert 3 ’(a b c d) ’(h i)) => (a b (h i) c d)

(let (a (b 5) (c (plus 3 5)))
(printc ”a ”a ”b ”b ”c ”c))
”a nil b 5 c 8”

Note: Initializations in LET are in “in parallel”, so later initializations cannot
make use of earlier ones.
If this functionality is required, use the function LET*. LET* is identical to LET
except for allowing later initializations to make use of earlier ones.

(LOAD filename [mode] [handler])

Argument Description
REFLECT: print out all S expressions read
VERIFY: print out expressions read and evaluated
REPLAY: reroute standard input to load file for EOF, GETCHAR, READ,

READLINE
168 Kernel Interface Driver Manual

. .

Examples:

If no file extension is given, then an extension of the type .lsp is assumed.

PACK
Pack groups elements of a list:

Examples:

If there are not enough elements available, the last element of the packed list is
shorter:

PLUS – Fsubr

PLUS returns the sum of all its arguments. PLUS can have any number of
arguments. If one of the arguments is a string, then the result is the string
concatenation of all arguments. The operator handles lists in a manner similar to
DIFFERENCE.

Examples:

See DIFFERENCE, MINUS and TIMES.

QUIT – Subr

Leaves the Lisp interpreter and closes the journal file for the session. Note that
an end-of-file encountered while reading from the standard input device has the
same effect as QUIT.

(DEFUN ignore () (PRINTC ”ignoring loading error”) T)
(LOAD ’fred ignore)

(LOAD ’fred T)

(pack 3 ’(0 0 0 0 0 1 0 0 2 0 0 3 0 0 4))
--> ((0 0 0) (0 0 1) (0 0 2) (0 0 3) (0 0 4))

(pack 3 ’(1 2 3 4)) --> ((1 2 3) (4))

(PLUS number number ...)

(PLUS 6 2 -3.1) = 4.9
(PLUS ’hello blank ’dolly) = ”hello dolly”
(PLUS ’(1 2 3) ’5) = ’(6 7 8)
(PLUS ’((1 2 3) (4 5 6)) ’(2 4)) = ’((3 4 5) (8 9 10))

(QUIT)
Kernel Interface Driver Manual 169

. .List of Parasolid LISP Functions
REMAINDER
Remainder has been overloaded to work on lists.

If two lists are passed as arguments then those elements which are common to
both p and q are removed from p. The resultant p is returned.

REPLACE
This is a simple function which replaces the nth element of the list m with the
specified value. The abs of m is unchanged. It is assumed that:

Example:

SELECT
This is a general function to select the first or last n elements from a list. If n is
negative the last n elements are selected. If the first argument is a list of integers
then the selection proceeds by grouping subsequent elements of the data list in
order.

Example:

SUB1
This function subtracts 1 and is equivalent to:

“<string>” special character
Any string contained in double quotes is turned into a quoted single identifier.
Within double quotes, spaces and punctuation characters (with the exception of
double quotes) do not have to be preceded by the escape character, !.

1 <= n <= (abs m)

(replace 1 ’(a b c d) ’h) => (h b c d)
(replace 4 ’(a b c d) ’h) => (a b c h)
(replace 3 ’(a b c d) ’(hi)) => (a b (h i) d)
(replace 2 ’((a b c) (d e f) (g h i)) ’(j k))

=> ((a b c) (j k) (g h i))

(select 3 ’(a b c d e f)) => (a b c)
(select -3 ’(a b c d e f)) => (d e f)
(select ’(3 3) ’(a b c d e f)) => ((a b c) (d e f))
(select ’(1 2 3) ’(a b c d e f))

=> ((a) (b c) (d e f))
(select ’(-1 -2 -3) ’(a b c d e f))

=> ((f) (d e) (a b c))

(difference x 1)
170 Kernel Interface Driver Manual

. .

Example:

-- special character
The double hyphen, --, introduces a comment which is terminated by the
newline character.

”123” = ’123
”temp.dat” = ’temp!.dat
”zum Beispiel: ” = ’zum! Beispiel!:!
Kernel Interface Driver Manual 171

. .List of Parasolid LISP Functions
172 Kernel Interface Driver Manual

E
EKID Examples

. .
E.1 Introduction
These examples are intended to demonstrate a range of modeling activities
using KID.

E.2 Example 1
Create a simple parametric curve wire.

E.3 Example 2
A cube and a parametric sheet body are created. The top planar face of the cube
is selected and tweaked to the parametric surface of the sheet using ntweak as
the surface normal must be reversed.

(modeller start)
(undefine pcurve1)
(define pcurve1 p_paracurve)
(pcurve1 help create)
(pcurve1 dim 4;

ord 4;
nseg 1;
verts’(0 0 0 1

1 1 0 2
3 -1 0 2
4 0 0 1);

create)
(modeller stop)
Kernel Interface Driver Manual 173

. .KID Examples
(modeller start)
(undefine blatt_4 f1 blo s1 tf3)
-- create a parametric sheet body
(define blatt_4 p_parasurf)
(blatt_4 dim 3;

uord 3;
vord 4;
nuseg 1;
nvseg 1;
verts ’(0.0 20.0 0.0

0.0 30.0 10.0
0.0 40.0 0.0
10.0 20.0 0.0
10.0 30.0 10.0
10.0 40.0 0.0
20.0 20.0 0.0
20.0 30.0 10.0
20.0 40.0 0.0
30.0 20.0 0.0
30.0 30.0 10.0
30.0 40.0 0.0);

create)
-- select the parametric face from the sheet body
(define f1 face)
(define s1 surface)
(f1 pick_from ’blatt_4)
(f1 pick_using ’(eq (f1 enquire ’type) "B-surface"))
-- create a B-surface from the parametric face of the sheet
(s1 pick_from ’f1)
(s1 enquire)
-- create a copy of the surface to avoid trying to share

across two bodies
((define s2 surface) replicate ’s1)
-- create a cube, centred under the parametric sheet
(define blo p_block)
(blo x 5; y 5 ; z 5; point ’(15 30 -15); create)
(define tf3 face)
-- select the top face of blo
(tf3 pick_from ’blo)
(tf3 pick_using ’(tf3 clash ’(15 30 -10)))
(modeller mark)
-- tweak top face of cube to the reverse of s1
(tf3 ntweak ’s2)
(modeller stop)
174 Kernel Interface Driver Manual

. .
E.4 Example 3
Two identical cylinders are united and the intersection edges are blended using
a rolling ball blend.

E.5 Example 4
This next example can be used to demonstrate the differing results of varying
combinations of arguments for the local operations crsofa and rmfaso.

(modeller start)
(undefine c1 c2 e1 b1)
(define c1 p_cylinder)
(define c2 p_cylinder)
(c1 help create)
(c1 radius 10; height 80; point ’(-40 0 0); direction ’(1 0 0);
create)
(c2 radius 10; height 80; point ’(0 -40 0); direction ’(0 1 0);
create)
(c1 unite ’c2)
(define e1 edge)
-- collect all edges from the resulting body
(e1 pick_from ’c1)
-- only those which are elliptical
(e1 pick_using ’(eq (e1 enquire ’type) ’ellipse))
-- make rolling ball blend
(define b1 p_fillet)
(b1 help apply)
(b1 r1 2)
-- apply blend to edges and fix
(b1 apply ’e1)
-- make sure it’s ok
(e1 blend_check)
(c1 blend_fix)
(graphics open_device ’xwindow)
(graphics sketch ’c1)
(graphics autowindow; clear; hidden)
(modeller stop)
Kernel Interface Driver Manual 175

. .KID Examples
(modeller start)
-- create cube and two spheres
(undefine s1 s2 b0 fred)
(define b0 p_block)
(b0 x 10; y 10; z 10; create)
(define s1 p_sphere)
(define s2 p_sphere)
(s1 radius 2; point ’(5 5 10); create)
(s2 radius 2; point ’(0 0 10); create)
-- unite cube and two spheres, renaming the resulting body
(b0 unite ’s1)
(b0 unite ’s2)
(define fred body)
(fred tag (unite_temp tag))
(graphics open_device ’xwindow)
(graphics hidden ’fred)
-- pick the two spherical faces into f1
(undefine f1)
(define f1 face)
(f1 pick_from ’fred)
(f1 pick_using ’(eq(f1 enquire ’type) ’spherical))
-- set modeller roll point
(modeller mark)
-- copy the two spherical surfaces and create two new bodies

using the argument ’grow’, leaving the parent body
unaltered.

(f1 crsofa ’grow)
(graphics clear)
(graphics sketch ’fred)
(graphics clear)
(graphics hidden ’(crsofa_c1 crsofa_c2))
-- rollback to last set mark and use rmfaso to remove the two

spherical surfaces and create new bodies.
(modeller roll)
(modeller mark)
(f1 rmfaso ’grow ’growp)
(graphics clear)
(graphics hidden ’rmfaso_p1)
(graphics clear)
(graphics hidden ’(rmfaso_c1 rmfaso_c2))
-- rollback for another combination
(modeller roll)
(modeller mark)
(f1 rmfaso ’cap)
(modeller stop)
176 Kernel Interface Driver Manual

. .
E.6 Example 5
A cube is created, and two lines scribed onto the top face creating 3 new faces
in place of the original. Two of these new faces are swept in opposite directions,
changing the geometry and topology of the cube.

Note: This example produces an invalid body.

(modeller start)
(undefine b0 plin1 plin2 f1 f2 pbc1 pbc2)
(define b0 p_block)
(b0 x 20; y 20; z 20; create)
(modeller mark)
-- the next sections scribe two bounded curves onto the top

face of the cube, then sweep two of the newly created faces.
(define plin1 p_line)
(plin1 point ’(0 0 20); direction ’(1 0 0); create)
(define pbc1 p_bounded_curve)
(define f1 face)
(f1 pick_from ’b0)
(f1 pick_using ’(f1 clash ’(0 0 20)))
(pbc1 startp ’(-10 0 20); endp ’(10 0 20))
(pbc1 face ’f1; curve ’plin1; scribe)
(define plin2 p_line)
(plin2 point ’(0 0 20); direction ’(0 -1 0); create)
(define pbc2 p_bounded_curve)
(define f2 face)
(f2 pick_from ’b0)
(f2 pick_using ’(f2 clash ’(0 -5 20)))
(pbc2 startp ’(0 0 20); endp ’(0 -10 20))
(pbc2 face ’f2; curve ’plin2; scribe)
-- use f1 and f2 to define the faces to be swept
(f1 pick_from ’b0)
(f2 replicate ’f1)
(f1 pick_using ’(f1 clash ’(0 5 20)))
(f2 pick_using ’(f2 clash ’(5 -5 20)))
(f1 sweep ’(0 0 10)) --> valid
(f2 sweep ’(0 0 -10)) --> self_intersecting
(graphics open_device ’xwindow)
(graphics sketch ’b0)
(b0 check) --> invalid body
(modeller roll)
(modeller stop)
Kernel Interface Driver Manual 177

. .KID Examples
178 Kernel Interface Driver Manual

F

. .

FMachine Dependency in
KID
F.1 Introduction
Very few KID commands are device dependent. The ones described are
functions of the graphics class.

F.2 open_device and close_device
In general it is not necessary to change the default settings for a particular
graphics device. If these defaults are to be changed, the function enquire gives
information on these settings. The graphics functions open_device and
close_device are used with an argument, to initialise or change the device
type.

The available devices are: cifer, new_cifer, plotter, laser, vt240_regis, vt240_tek,
postscript, Xwindow, Xcolor, Xcolour, nt, ntcolor, ntcolour, interleaf, framemaker
and null.

A null device is sometimes useful to ensure that a device is open even if the
output is not to be viewed.

The shade function is only available with X devices, not on NT.

F.3 Which key for pick?
The pick command belonging to the entity and p_points classes enables
the cursor when used without argument. To pick an object or screen coordinate
pressing any key achieves the pick.

Object Function
graphics open_device, close_device

> (graphics enquire) --> information
> (graphics open_device ’x)

-- initialise device setting to Xwindow
> (graphics close_device ’x) --> unset current device setting
Kernel Interface Driver Manual 179

. .Machine Dependency in KID
F.4 KID interrupts
KID contains an error handler which allows the user to interrupt the execution of
a KID or FLICK command without exiting from the KID session. On most
machines this responds to ctrl-C.

> (define p1 p_points)
> (define b0 p_cone)
> (define f1 face)
> (b0 lrad 10; urad 0; height 30; create)
> (graphics sketch ’b0)
> (f1 pick) -- cursor enabled for face pick
> (p1 pick)

-- cursor enabled for image plane coordinate pick(s)

user-interrupt exit KID kill KID
NT ctrl-C ctrl-Z -
UNIX ctrl-C ctrl-D -
180 Kernel Interface Driver Manual

In
Index

. .
-
extended list function 26

A
allow_ifails Function 45
anti_aliasing

rendering option 103
Apply Function 64
assemble function 135
Assemblies

assemble function 135
create function 55
disassemble function 55
p_assembly 55

Atom
list operator 21

Attach
extended list function 25

Attributes 87
constructing 87
controlling names 90
defining structure 88
reading from 89
writing to 89

autowindow
graphics function 97

axes
graphics function 99

B
background_colour

rendering option 104
bb Option Function 34
bb_user option function 34
blend

rendering option 104

blend_check function 65
blend_enquire function 65
blend_fix Function 65
blend_remove function 65
Blends

apply function 64
blend_check function 65
blend_enquire function 65
blend_fix function 65
blend_remove function 65
blending on vertices

variable radius blends 67
cliff_edge function 66
defining and fixing in a single operation,,

see also body
extract function 66
pick_blend function 65
unfixed,, see also body

Blends,, see also body
Body

blends 60
defining and fixing in a single operation

67
unfixed 61

booleans 57
hollowing 69
imprinting 71
local operations 73
offsetting 70
sewing 59
sweeping 67
swinging 67

Booleans
check function 57, 58
create function 57
halve function 58
intersect function 57, 58
merge function 57, 59
multiple bodies 58
Kernel Interface Driver Manual 181

. .Index
on a single class 58
quarter function 58
section function 57
subtract function 57, 58
unfix function 57, 59
unite function 58

Booleans,, see also body
Bounded_curve,, see also p_bounded_curve
box Function 84
bspline_geometry

option function 34
bspline_io option function 34
bspline_splitting

option function 34

C
Call

ki_full function 80
Car

list operator 17
Cdr

list operator 18
Chamfer,, see also p_chanfer
Check Function 57, 58
check Option Function 34
clash Function

enquiring on a supplied point 85
Class 11, 12

options 33
p_blend 60
p_body 49
p_geometry 51
p_profile 50
transformable 60

Class structure
entity 141
graphics 148
modeller 139
primitives 146

cliff_edge Function 66
Close device

graphics 179
Cond

list operator 21
Cons

list operator 19
Continuity_checking option function 34
convexity

rendering option 104
Create Function 49, 51, 52, 55
create_sheet Function 74
create_solid Function 75
Creating Primitives 49

geometric primitives 51
solid primitives 49

current view
graphics 92

Cursor pick 130
curve_tolerance

depth_modulation 105
rendering option 105, 106

D
data_checking option checking 34
Dead Tags 12
Define

extended list function 25
define function 31
Defun

extended list function 26
delete_faces Function 75
Detach

extended list function 25
disassemble function 55
dotted pairs 19
drafting

rendering option 106
drawing list 100

E
edge_tags

rendering option 107
Element

list operator 19
Enquire
182 Kernel Interface Driver Manual

. .

KID object function 13

enquire
graphics function 100

enquire Function 81
enquire option function 34
Enquiries

acessing KI routine IDCOEN 84
coordinates of box 84
on a supplied point 85
setting `tag' property 82
using `enquire' to construct complex

functions 83
Entity

class structure 141
pick, pick items from screen 130
pick_from 83
pick_using 83

Errors 12
Extended lisp functions

- 26
attach 25
define 25
defun 26
detach 25
help 25
is 25
redefine 25
sibling 26
subclass 26
subtree 26
superclass 26
supertree 26
undefine 25

extract Function 66

F
Face

fix, attach surface to face 68
face_colour

rendering option 107
facet

graphics function 103
facet_infinite

rendering option 107
facet_minimum_size

rendering option 108
facet_perspective

rendering option 108
facet_size

rendering option 109
facet_strips

rendering option 109
Fillet,, see also p_fillet
first_derivatives

rendering option 110
Fix

attach surface to face 68
Fix,, see also blend_fix
FLICK 39

ifail checking 45
lower case routines 40
timing 47
upper case routines 39

Flick
call the KI 80

frame
graphics function 99

framemaker 93
Function

allow_ifails 45
apply 64
assemble 135
blend_check 65
blend_enquire 65
blend_fix 65
blend_remove 65
box 84
check 57, 58
clash 85
cliff_edge 66
create 49, 51, 52, 55
create_sheet 74
create_solid 75
define 31
delete_faces 75
disassemble 55
enquire 81
extract 66
Kernel Interface Driver Manual 183

. .Index
halve 58
help 33
hollow 69

fail option 69
identify 78
imprint 71
include 32
intersect 57, 58
magnify 79
mass 80
merge 57, 59
mirror 79
move 59
ntweak 73
offset 70
option

bb 34
bb_user 34
bspline_geometry 34
bspline_io 34
bspline_splitting 34
check 34
continuiuty_checking 34
data_checking 34
enquire 34
get_snapshot 34
journal 34
logging 34

forward 34
number 34
size 34

parameter_checking 34
pk_session_local_checking 34
pk_session_receive 34
pk_session_tolerance 34
pk_session_transmit 34
rec_user 34
receive 34
save_snapshot 34
self_checking 34
transmit 34
user_field 34

pick_blend 65
pierce_faces function 70
quarter 58

receive 32
redefine 31
reflect 79
remove 32
remove_faces 75
rename 78
replicate 77
rotate 60
scribe 51
section 57
sew 59
subtract 57, 58
sweep 67
swing 68
tag 82
taper 76
tolerance 59
transmit 32
tweak 73
twefac 73
undefine 31
unfix 57, 59
unite 57, 58

function
mark 30
roll 30
start 28
stop 29

Function Arguments 13

G
Geometric Primitives 51

create function 52
p_circle 52
p_conical 52
p_cylindrical 52
p_ellipse 52
p_intersection 52
p_line 52
p_offset 52
p_planar 52
p_sheet 53
p_spherical 52
184 Kernel Interface Driver Manual

. .

p_spun 52
p_swept 52
p_toroidal 52
p_wire 52

get_snapshot Option Function 34
Graphics 10

class structure 92, 148
altering defaults 92
current view 92

close device 179
open device 179
opening an Xwindow 91
output devices

framemaker 93
interleaf 93
laser 93
plot 93
postscript 93

p_points
to create p_profile 130

picking 129
an entity from an assembly 135
directly from other objects 131

using a list of tags 133
from the screen

pick 129
vector points 134
with one argument 130
with two arguments 131

rendering
faceted pictures

facet 103
hidden line pictures

hidden 102
options 103

anti_aliasing 103
background_colour 104
blend 104
convexity 104
curve_tolerance 105
depth_modulation 105
drafting 106
edge_data 106
edge_tags 107
face_colour 107

facet_infinite 107
facet_minimum_size 108
facet_perspective 108
facet_size 109
facet_strips 109
first_derivatives 110
hierarchical 110
hierarchical_no_geom 110, 111
holes_permitted 111
ignore_loops 111
image_smoothness 113
internal_edges 113
invisible 113
no_fitting 115
nurbs_curves 115
para_hatch 116
parameter_information 116
parametric_curves 117
perspective 117
planar_hatch 118
planarity_tolerance 118
radial_hatch 119
regional 119
regional_attribute 119
second_derivatives 120
silhouette 123
silhouette_density 123
smooth_edges 124
smooth_edges_do_not_block 124
surface_reflection 124
surface_tolerance 125
transform 126
translucence 126
vertex_matching 126
vertex_normals 127
viewport 127

shade function
lights 114
resolution 120
shade_file 121

shaded pictires
shade 102

wire-frame pictures
sketch function 101

re-using an existing Xwindow 91
Kernel Interface Driver Manual 185

. .Index
viewing environment 95
autowindow 97
axes, display of 99
drawing list 100
enquire 100
frame, display of 99
perspective 95
pick_centre 96
pick_window 96
select 99
view 95
view_direction 95
view_from 95
view_to 95
view_vertical 95
view_window_**** 96

H
Halve function 58
Help 11

extended list function 25
help function 33
hidden

graphics function 102
hierarchical

rendering option 110
hierarchical_no_geom

rendering option 110, 111
holes_permitted

rendering option 111
hollow function 69

fail option 69
Hollowing

hollow function 69
imprint function 71
offset function 70
pierce_faces fucntion 70

Hollowing,, see also body

I
identify Function

selecting by 78

Ifail Checking 45
allow_ifails 45

ignore_loops
rendering option 111

image_smoothness
internal_edges 113
invisible 113
no_fitting 115
nurbs_curves 115
para_hatch 116
rendering option 113

Imprint Function 71
Imprinting,, see also body
include function 32
Instances

create function 55
p_instance 55

interleaf 93
Interrupts

KID 180
Intersect Function 57, 58
Intersect_temp

created by intersect operation 57
Is

extended list function 25
Item 11

J
journal Option Function 34
journal_file

option function 34

K
KI

direct calls to
flick 80

KID
concepts 11

class 11
dead tags 12
errors 12
function arguments 13
186 Kernel Interface Driver Manual

. .

item 11
object 11
primitives 12
tags 12

facilities
graphics 10
help 11
rollback 10

interrupts 180
LISP 10
modeller

starting 13
object oriented 11
what is 9

L
laser 93
lights

shade function 114
LISP 10
List operators (LISP) 17
Listp

list operator 21
Local Operations 73

create solid 75
create_sheet 74
delete_faces 75
ntweak function 73
remove_faces 75
taper 76
tweak function 73
twefac function 73

Logging
option function 34

logging_forward
option function 34

logging_number
option function 34

logging_size
option function 34

M
magnify Function 79
mark function 30
mass Function 80
Mass Properties

mass function 80
Merge Function 57, 59
mirror Function 79
Modeling in Kid

attributes 87
Modeller

class structure 139
Move Function 59

N
ntweak function 73

O
Object 11
Object Oriented 11

class
option 33

check for local ops 34
user field 35

combining tags 32
defining KID objects 31
Enquiring 81
help 33
journal file 28
modeller mark 30
modeller roll 30
modeller start 28
modeller stop 28
programming 27

object and message passing 27
receive 32
removing tags 32
transmit 32

Offset Function 70
Offsetting,, see also body
Open device
Kernel Interface Driver Manual 187

. .Index
graphics 179
Output Devices

Framemaker 93
Interleaf 93
laser 93
plot 93
postscript 93

P
p_acorn 49
p_assembly 55
P_blend

create 60
properties

idraw, draw option 61
irib, rib option 61
r1 and r2, blend ranges on underlying

surface 61
rib, rib spacing 61
thumbweight 61
type, blend type 61

p_blend Class 60
p_blend,, see also p_blend
p_block 49
p_body Class 49
P_bounded_curve

scribe, inscribes bounded curve 69
p_bounded_curve 51
P_chanfer

create 64
p_circle 52
p_cone 49
p_conical 52
p_cylinder 49
p_cylindrical 52
p_ellipse 52
p_equal_scaling 54
P_fillet

create 64
p_general_transform 54
p_geometry Class 51
p_instance 55
p_intersection 52

p_line 52
p_offset 52
p_paracurve 49
p_parasurf 49
p_planar 52
P_points

pick 130, 134
to create a p_profile 130

p_prism 49
P_profile

coordinate property 130
create

using p_points 130
p_profile 49, 51
p_profile Class 50
p_pyramid 49
p_reflection 54
p_rotation 54
p_sheet 49, 53
p_sphere 49
p_spherical 52
p_spun 52
p_swept 52
p_toroidal 52
p_torus 49
p_translation 54
p_wire 49, 52
Parameter_checking

option function 34
parameter_information

rendering option 116
parametric_curves

rendering option 117
perspective

graphics function 95
rendering option 117

Pick
for p_points 130
p_points 130, 134
picking directly from other objects 131

pick
graphics function 129

pick_blend Function 65
pick_centre

graphics function 96
188 Kernel Interface Driver Manual

. .

pick_window

graphics function 96
Picking 129

an entity from an assembly 135
directly from other objects 131

using a list of tags 133
from the screen

pick 129
p_points

to create p_profile 130
vector points 134
with one argument 130
with two arguments 131

pierce_faces function 70
pk_session_local_checking

option function 34
pk_session_receive

option function 34
pk_session_tolerance

option function 34
pk_session_transmit

option function 34
planar_hatch

rendering option 118
planarity_tolerance

rendering option 118
plot 93
Points,, see also p_points
postscript 93
Primitives 12

class structure 146
for individual primitives,, see also p_blend
for individual primitives,, see also

p_bounded_curve
for individual primitives,, see also

p_chamfer
for individual primitives,, see also p_fillet
for individual primitives,, see also p_points

Profiling Primitives
create function 51
p_bounded_curve 51
p_profile 51
scribe function 51

Q
Quarter Function 58

R
radial_hatch

rendering option 119
rec_user

option function 34
receive

option function 34
receive function 32
Redefine

extended list function 25
redefine function 31
reflect Function 79
regional

rendering option 119
regional_attribute

rendering option 119
remove function 32
remove_faces Function 75
rename Function 78
rendering

faceted pictures
facet 103

hidden line pictures
hidden 102

options 103
anti_aliasing 103
background_colour 104
blend 104
convexity 104
curve_tolerance 105
depth_modulation 105
drafting 106
edge_data 106
edge_tags 107
face_colour 107
facet_infinite 107
facet_minimum_size 108
facet_perspective 108
facet_size 109
Kernel Interface Driver Manual 189

. .Index
facet_strips 109
first_derivatives 110
hierarchical 110
hierarchical_no_geom 110, 111
holes_permitted 111
ignore_loops 111
image_smoothness 113
internal_edges 113
invisible 113
no_fitting 115
nurbs_curves 115
para_hatch 116
parameter_information 116
parametric_curves 117
perspective 117
planar_hatch 118
planarity_tolerance 118
radial_hatch 119
regional 119
regional_attribute 119
second_derivatives 120
silhouette 123
silhouette_density 123
smooth_edges 124
smooth_edges_do_not_block 124
surface_reflection 124
surface_tolerance 125
transform 126
translucence 126
vertex_matching 126
vertex_normals 127
viewport 127

shade function
lights 114
resolution 120
shade_file 121

shaded pictures
shade 102

wire-frame pictures
sketch function 101

replicate Function 77
Reserved words 26, 139, 159
resolution

shade function 120
roll function 30

Rollback 10
Rolling ball blend,, see also blend
Rotate Function 60

S
save_snapshot

option function 34
Scribe Function 51
second_derivatives

rendering option 120
Section Function 57
select

graphics function 99
self_checking

option function 34
Sew Function 59
Sewing

sew function 59
tolerance functio 59

Sewing,, see also body
shade

graphics function 102
shade_file

shade function 121
Sibling

extended list function 26
silhouette

rendering option 123
silhouette_density

rendering option 123
sketch

graphics function 101
smooth_edges

rendering option 124
smooth_edges_do_not_block

rendering option 124
Solid Primitives 49

create function 49
p_acorn 49
p_block 49
p_cone 49
p_cylinder 49
p_paracurve 49
190 Kernel Interface Driver Manual

. .

p_parasurf 49
p_prism 49
p_profile 49
p_pyramid 49
p_sheet 49
p_sphere 49
p_torus 49
p_wire 49

start function 28
stop function 29
Subclass

extended list function 26
Subtract Function 57, 58
Subtract_temp

created by subtract operation 57
Subtree

extended list function 26
Superclass

extended list function 26
Supertree

extended list function 26
surface_reflection

rendering option 124
surface_tolerance

rendering option 125
sweep function 67
Sweeping

swep function 67
Sweeping,, see also body
swing function 68
Swinging

swing function 68
Swinging,, see also body

T
tag Function

enquiring 82
Tags 12
taper function 76
Timing 47
Tolerance Function 59
transform

rendering option 126

transformable class 60
Transformation Primitives

p_equal_scaling 54
p_general_transform 54
p_reflection 54
p_rotation 54
p_translation 54

Transforming Bodies
move function 59
rotate function 60

translucence
rendering option 126

transmit
option function 34

transmit function 32
tweak Function 73
twefac function 73

U
Undefine

extended lisp function 25
undefine function 31
Unfix Function 57, 59
Unite Function 57, 58
Unite_temp

created by unite operation 57
user_field

option function 34
option function, setting of user field length

35

V
Variable radius blends 67
vertex_matching

rendering option 126
vertex_normals

rendering option 127
View

graphics class 92
properties 95

view
graphics function 95
Kernel Interface Driver Manual 191

. .Index
view_direction
graphics function 95

view_from
graphics function 95

view_to
graphics function 95

view_vertical
graphics function 95

view_window_****
graphics function 96

Viewing Environment 95
autowindow 97
axes, display of 99
drawing list 100
enquire 100
frame, display of 99
perspective 95
pick_centre 96
pick_window 96
select 99
view 95
view_direction 95
view_from 95
view_to 95
view_vertical 95
view_window_**** 96

viewport
rendering option 127
192 Kernel Interface Driver Manual

	Table of Contents
	Kernel Interface Driver (KID) – an Overview
	1.1 Introduction
	Document purpose
	Notation used in this manual
	What is KID?
	1.1.1 LISP
	What is LISP?

	1.1.2 Facilities within KID
	Graphics
	Rollback
	Help

	1.2 Concepts
	1.2.1 Object-oriented KID
	Objects and classes
	Item
	Primitives
	Tags
	Dead Tags
	Errors
	Function arguments

	1.3 Starting/terminating a KID session
	Starting
	Terminating

	LISP in KID
	2.1 Introduction
	2.1.1 LISP evaluation
	S-expressions
	Atoms
	Lists
	List evaluation
	Quotation

	2.1.2 Atomic Symbols
	SETQ
	Predefined symbol-strings

	2.2 List operators
	2.2.1 CAR and CDR
	car
	cdr
	Embedded car and cdr calls
	element

	2.2.2 CONS
	Dotted pairs

	2.2.3 LIST and APPEND
	list
	append

	2.3 Predicates
	Logical operators
	atom
	listp

	2.4 Conditionals
	2.5 User-defined functions
	defun

	2.6 Recursion vs. iteration
	2.6.1 Recursion
	2.6.2 Iteration
	mapc

	2.7 Special features of Parasolid LISP
	Quick reference summary
	Error codes

	2.8 Object oriented LISP

	Object-Oriented KID
	3.1 Object oriented programming
	3.1.1 Objects and message passing
	3.1.2 Parasolid PK functions and KI routines

	3.2 KID journal file
	3.3 Starting and stopping the kernel
	start function
	stop function

	3.4 Parasolid journal file
	Journalling options available before (modeller start)
	Journalling options available after (modeller start), if journalling is enabled

	3.5 Rollback during a modeling session
	mark
	roll

	3.6 Defining KID objects
	define
	undefine
	redefine

	3.7 Combining tags of KID objects
	include, remove

	3.8 Receive and transmit
	receive, transmit and state functions

	3.9 Help
	help function

	3.10 Options
	Options for receive and transmit
	Option check for local operation
	Options for rollback
	option user_field
	Options reset by new modeling session
	Tolerance setting

	Calling the KI/PK Using KID (FLICK)
	4.1 Introduction
	4.2 Functional low-level interface to the C-kernel (FLICK)
	Using upper case Parasolid KI routines
	Using lower case Parasolid KI routines

	4.3 Calling KI routines
	Option lists
	Option tokens
	Option tokens with associated data

	4.4 Calling PK functions
	Options argument
	Optional received arguments
	Optional returned arguments
	Structures
	Primitives

	4.5 Using the quote (’)
	Passing lists directly to the KI/PK

	4.6 KI ifail checking
	allow_ifails function

	4.7 PK error checking
	4.8 Timing

	Creation of Primitives
	5.1 Introduction
	5.1.1 Solid Primitives
	Creating a block
	Creating a sphere

	5.2 Additional Primitive Options
	5.2.1 p_pyramid
	5.2.2 p_block, p_cone and p_cylinder
	5.2.3 p_sphere and p_torus
	5.2.4 Profiling
	p_profile class
	scribe function
	Geometric Primitives
	Creating a p_wire from a p_line

	5.3 Transformation Primitives
	5.3.1 p_equal_scaling
	5.3.2 p_reflection
	5.3.3 p_rotation
	5.3.4 p_translation
	5.3.5 p_general_transform

	5.4 Assemblies and Instances
	assembly and instance functions
	disassemble function

	Operations on Bodies, Curves, Surfaces, etc.
	6.1 Introduction
	6.2 Booleans
	check function
	unite function
	subtract function
	intersect function
	6.2.1 Multiple bodies
	6.2.2 Sectioning primitives
	halve and quarter functions

	6.2.3 Operations on the single class
	merge function
	unfix function

	6.3 Sewing
	sew function
	tolerance function

	6.4 Transforming bodies
	move function
	rotate function

	6.5 Blends
	6.5.1 Creating unfixed blends
	p_blend, p_fillet, p_chamfer
	blending properties
	p_vrb
	p_ff_blend
	apply function

	6.5.2 Checking, enquiring and removing unfixed blends, and picking blends
	blend_check function
	blend_enquire function
	blend_remove
	pick_blends function

	6.5.3 Fixing blends
	blend_fix function

	6.5.4 Extracting blend information from a blended body
	extract function

	6.5.5 Creating a cliff-edge blend
	cliff_edge blend function

	6.5.6 Defining and fixing a blend in a single operation
	6.5.7 Blending on vertices

	6.6 Sweeping and swinging
	sweep function
	swing function
	6.6.1 Sweeping faces

	6.7 Hollowing, offsetting and imprinting
	6.7.1 Hollowing
	hollow function
	hollowing properties
	pierce_faces function

	6.7.2 Offsetting
	offset function
	offsetting properties

	6.7.3 Imprinting
	imprint function

	Local Operation Functions
	7.1 Introduction
	tweak function
	ntweak function
	twefac function
	create_sheet function
	remove_faces, create_solid and delete_faces functions
	taper function

	Miscellaneous Useful Functions
	8.1 Replication of objects within the modeller
	replicate function

	8.2 Renaming a modeller item
	rename function

	8.3 Selecting an entity using its identifier
	identify function

	8.4 Magnifying, reflecting and mirroring a body
	magnify function
	reflect function
	mirror function

	8.5 Mass properties
	8.6 KI/PK Functions

	Enquiries
	9.1 Introduction
	enquire function
	Using enquire on a one layer assembly
	Using the level function to create a single layer assembly

	9.2 Enquiring/setting the tag property
	9.3 Using enquire to construct complex functions
	9.4 Accessing the KI routine IDCOEN for topological entities
	9.5 Enquiring coordinates of box enclosing single item
	9.6 Enquiring on a supplied point

	Attributes in KID
	10.1 Using attributes
	10.2 Constructing attributes
	Activate all current attributes
	Attach to an existing attribute
	Specify a full attribute definition
	Create just from the tag
	Post the attribute name but delay creation until actual use

	10.3 Defining attribute structures
	10.4 Reading from attributes
	10.5 Writing to attributes
	10.6 Controlling attribute names

	KID Graphics: Overview
	11.1 Introduction
	Opening an Xwindow
	Re-using an existing graphics window

	11.2 The Class Structure
	Altering Defaults
	Current View

	11.3 Output Devices
	Framemaker, Interleaf, Laser, Plot and Postscript

	Viewing Environment and Definition
	12.1 Introduction
	view_to, view_from view_direction view_vertical, perspective functions
	view function

	12.2 Windowing
	view_window_xmin/xmax/ymin/ymax
	12.2.1 Using the cursor for redefining the window
	pick_window
	pick_centre
	autowindow
	redraw
	ar
	centre
	zoom

	12.3 View manipulation
	pan_left/right/up/down
	rotate_left/right/up/down

	12.4 Selecting a view
	12.5 Clearing the screen and drawing the current view
	clear
	frame and axes functions

	12.6 Use of the drawing list
	drawing_list

	12.7 Enquiry

	KID Rendering
	13.1 Introduction
	13.1.1 Wire frame pictures
	sketch

	13.1.2 Hidden line pictures
	hidden

	13.1.3 Shaded pictures
	shade

	13.1.4 Faceted pictures
	facet

	13.2 Rendering options
	anti_aliasing (RROPAN)
	background_colour (RROPBK)
	blend (RROPUB)
	convexity (RROPCV)
	curve_tolerance (RROPCT)
	depth_modulation (RROPDM)
	drafting (RROPDR)
	edge_data (RROPED)
	edge_tags (RROPET)
	face_colour (RROPFC)
	facet_infinite (RROPFI)
	facet_minimum_size (RROPMF)
	facet_perspective (RROPFP)
	facet_size (RROPFS)
	facet_strips (RROPTS)
	first_derivatives (RROPD1)
	hierarchical (RROPHR)
	hierarchical_no_geom (RROPHN)
	hierarchical_parametrised (RROPHP)
	holes_permitted (RROPHO)
	ignore_loops (RROPIL)
	image_smoothness (RROPIS)
	internal_edges (RROPIE/N)
	invisible (RROPIV)
	lights function
	no_fitting (RROPNF)
	nurbs_curves (RROPNC)
	para_hatch (RROPPA)
	parameter_information (RROPPI)
	parametric_curves (RROPPC)
	perspective (RROPPS)
	planar_hatch (RROPPH)
	planarity_tolerance (RROPPT)
	radial_hatch (RROPRH)
	regional (RROPRG)
	regional_attribute (RROPRA)
	resolution
	second_derivatives (RROPD2)
	shade_file
	silhouette (RROPSI)
	silhouette_density (RROPSD)
	smooth_edges (RROPSM)
	smooth_edges_do_not_block (RROPDS)
	surface_reflection (RROPSF)
	surface_tolerance (RROPST)
	transform (RROPTR)
	translucence (RROPTL)
	vertex_matching (RROPVM)
	vertex_normals (RROPVN)
	viewport (RROPVP)

	Picking
	14.1 Introduction
	14.2 Picking from the screen
	pick
	Using p_points to create a p_profile
	14.2.1 Pick with one argument
	14.2.2 Pick with two arguments

	14.3 Picking directly from other objects
	pick_from
	pick_using
	pick_node
	Using a list of tags to manipulate an object

	14.4 Picking vector points
	14.5 Picking an entity from an assembly
	assemble function

	Fault Reporting in KID
	15.1 Introduction
	15.2 Fault types
	15.3 Fault isolation and simplification

	KID Class Structure
	A.1 Introduction
	A.1.1 Modeller substructure
	A.1.2 Entity substructure
	A.1.3 Primitive substructure
	A.1.4 Graphics substructure

	Parasolid LISP Functions
	B.1 Introduction
	B.2 Arithmetic operators
	B.3 Environment
	B.4 Monadic operators
	B.5 List operators
	B.6 Evaluation
	B.7 I/O operators
	B.8 Time operators
	B.9 System functions
	B.10 System variables

	Error Codes in Parasolid LISP
	List of Parasolid LISP Functions
	D.1 PARASOLID LISP functions
	D.2 PARASOLID LISP function descriptions
	ABS – Subr
	ADD1
	DEFUN – Fsubr
	DIVIDE
	ENTWINE
	EQUAL – Fsubr
	FILTER
	HELP – Fsubr
	INSERT
	LET
	LOAD – Subr
	PACK
	PLUS – Fsubr
	QUIT – Subr
	REMAINDER
	REPLACE
	SELECT
	SUB1
	“<string>” special character
	-- special character

	KID Examples
	E.1 Introduction
	E.2 Example 1
	E.3 Example 2
	E.4 Example 3
	E.5 Example 4
	E.6 Example 5

	Machine Dependency in KID
	F.1 Introduction
	F.2 open_device and close_device
	F.3 Which key for pick?
	F.4 KID interrupts

	Index

