
Parasolid V13.0

Getting Started With Parasolid

June 2001

Important Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc.

© Copyright 2001 Unigraphics Solutions Inc. All rights reserved
Restricted Rights Legend: This commercial computer software and related documentation are
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable.
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the
terms of the applicable license agreement. Any copying of this documentation, except as permitted
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

Cambridge CB2 1DP
UK

Tel: +44 (0)1223 371555
Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com

Trademarks
Parasolid is a trademark of Unigraphics Solutions Inc.
HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.
IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.

OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual Studio, Visual C/C++ and Window NT are either registered trademarks or
trademarks of Microsoft Corp.
Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.

ATable of Contents

. .
 1 Introduction .5
1.1 Some assumptions 5

 2 Application Design .7
2.1 Downward interfaces 8

2.1.1 The frustrum 8
2.1.2 Graphical output 8

2.2 Calls to Parasolid functions 9
2.2.1 Managing Parasolid errors 9

 3 Supplying A Frustrum . . 11
3.1 Introduction 11
3.2 What code do you need to supply? 11

3.2.1 Required functionality 11
3.2.2 Optional functionality 12

3.3 Registering the frustrum 12
3.4 File handling 13

3.4.1 Structuring the file system for your application 13
3.4.2 File types and file extensions 14
3.4.3 Example file handling code 15

3.5 Memory management 16
3.6 Graphical output 16

3.6.1 Calling PK rendering functions 17
3.6.2 Supplying GO functions 17
3.6.3 Choosing which graphics libraries to use 18

3.7 Error handling 18
3.7.1 Choosing an error handling strategy 18
3.7.2 Handling non-zero error codes 19
3.7.3 What to do when an error occurs 20

3.8 Starting and stopping a Parasolid session 20

 4 The Example Application . 21
4.1 Building and running the Example Application 22
4.2 Calling PK functions 23
4.3 The frustrum 25
4.4 File handling 25
Getting Started With Parasolid 3

. .Table of Contents
4.4.1 File types 25
4.4.2 File extensions 26

4.5 Memory management 26
4.6 Graphics 26
4.7 Error handling 27
4.8 Starting the Parasolid session 27

 A Further Implementation Decisions 29
A.1 RTE and interrupt handling 29
A.2 Rollback 29
A.3 Tracking entities 30
A.4 Session parameters 30

 B Using the PK Interface 33
B.1 Introduction 33
B.2 PK interface functions 33

B.2.1 Types associated with PK classes 33
B.2.2 Using function arguments correctly 34

B.3 Types of structures 34
B.3.1 Passing arguments in options structures 34
B.3.2 Standard form structures 35
B.3.3 Return structures 36

B.4 Memory management for returned arguments 36
B.4.1 Memory management functions in the PK 37
B.4.2 Return structures containing pointers 38
B.4.3 Optional return arguments 38

B.5 Example code 39
B.6 Integrating with MS Visual Studio 40

B.6.1 Adding pskernel.lib to MS Visual C++ 40
B.6.2 Specifying an additional include directory 41
4 Getting Started With Parasolid

1
1Introduction

. .
Welcome to the Parasolid Getting Started Guide. This quick-start guide will
get you working with Parasolid as simply and efficiently as possible. If you are a
newcomer to Parasolid, it explains the steps you need to complete in order to
implement Parasolid in your application. It also touches on other design
considerations you need to think about, though you should refer to the full
Parasolid documentation set for more details on these.

When you begin working with a system as complex as Parasolid, it can be
difficult finding out what your first steps should be. This is equally true if you are
developing a Parasolid-powered application from scratch, or if you are
integrating Parasolid into an existing application. This guide shows you just what
those first steps should be, and points you to code examples supplied on the CD
so that you can get started as quickly as possible.
The contents of the rest of the guide are as follows:

� Chapter 2, “Application Design” describes the design of a typical Parasolid-
enabled application, and introduces you to the various components in a
typical system.

� Chapter 3, “Supplying A Frustrum” describes how to supply a frustrum. The
frustrum is the part of your application that interfaces with Parasolid in order
to provide file, memory, and graphics handling capabilities.

� Chapter 4, “The Example Application” describes a real frustrum
implementation that is available with the Parasolid release.

� Appendix A, “Further Implementation Decisions” gives an overview of non-
essential functionality that you might want to include in your frustrum.

� Appendix B, “Using the PK Interface” gives you an introduction to calling
Parasolid functions for modeling part data.

Please remember that this guide is intended as an introduction to Parasolid. It
tells you the minimum you need to know in order to get up and running. It does
not mention everything you might like to know about, and it may not cover all the
issues that are relevant to your particular application. You should refer to the full
Parasolid documentation set if you need more information.

1.1 Some assumptions
The frustrum code described in this guide addresses issues that are most
relevant if you are developing applications for use on Windows NT or Windows
2000. If your application runs on a UNIX platform, you can find source code for a
Getting Started With Parasolid 5

. .Introduction
platform-independent frustrum on the Parasolid Release CD. See the Parasolid
Release Notes for more details.
6 Getting Started With Parasolid

2
2Application Design

. .
When integrating Parasolid into your product, some of the design decisions you
need to make are constrained by the requirements of Parasolid itself. Your
ultimate aim is to make calls to Parasolid routines from within your own
application code in order to perform solid modeling operations. In order to do this,
you need to supply code that ensures that your application and Parasolid can
interact correctly. This chapter gives you an overview of the code you need to
supply before you can start making calls to Parasolid routines from your own
code.

Figure 2–1 shows how Parasolid interacts with a typical application:

Figure 2–1 How Parasolid interacts with a typical application

PARASOLID

PK Interface

GO InterfaceFrustrum
Interface

Memory
management

Data
management
(file access
etc.)

Visualization

APPLICATION

DOWNWARD
INTERFACES

Calls to
Parasolid
functions
Getting Started With Parasolid 7

. .Application Design
The code that you need to supply for integration with Parasolid falls into two
categories:

� Downward interface code.
� Calls to Parasolid functions.

2.1 Downward interfaces
Your application controls all interaction between Parasolid and the operating
system. The parts of your application that deal with this are referred to generically
as downward interfaces. You usually need to have two parts to your downward
interface:
� The frustrum
� Graphical Output (GO) – required for displaying models

Because Parasolid itself makes calls to routines in these downward interfaces,
they need to be registered with Parasolid before your application can call any
Parasolid functions.

2.1.1 The frustrum
The frustrum is a suite of functions that deals with
� File handling: Saving and retrieving Parasolid part files and other data.
� Memory management: Allocating memory for internal calculations and data

structure storage.

2.1.2 Graphical output
If your application needs to display models – whether by rendering them on
screen, or printing them to a plotter or laser printer – you must provide GO
functions for Parasolid to use.

Parasolid calls the GO functions whenever your application calls a Parasolid
rendering function in order to draw one or more parts. The GO functions
encapsulate the graphical information output by Parasolid, and pass it to a
graphics library (that you also provide) in order to render the image.

You can write the graphics library yourself, or you can use a third party library
such as OpenGL or DirectX.

Note: In practice, GO functions are implemented as part of the frustrum. You
can think of them as a separate downward interface to the extent that: (a) they
are not needed if you do not need to deal with model display; and (b) they
require use of a separate graphics library.
8 Getting Started With Parasolid

. .Calls to Parasolid functions
2.2 Calls to Parasolid functions
Parasolid is supplied as a library of functions and is designed as a toolkit of
component software that you can embed into your product. The Parasolid API is
called the PK. The PK contains functions for:

� Building, modifying, and combining parts
� Finding out information about the properties of parts (such as mass,

geometric information, or rendering information)
� Functions for saving parts, and loading parts back into Parasolid

See Appendix B, “Using the PK Interface”, for an introduction to using functions
in the PK.

2.2.1 Managing Parasolid errors
Your application must be able to handle errors returned by Parasolid. Parasolid
provides two different strategies for handling errors, so that you can choose the
strategy that best matches the way that your application handles other errors.
See Section 3.7, “Error handling”, for more details.
Getting Started With Parasolid 9

. .Application Design
10 Getting Started With Parasolid

3
3Supplying A Frustrum

. .
3.1 Introduction
As described in Chapter 2, “Application Design”, you need to supply frustrum
code to Parasolid in order to perform the following tasks:
� Frustrum control
� File (part data) handling
� Memory management
� Graphical output

This section gives you an overview of what you need to supply in order to
accomplish these tasks.

3.2 What code do you need to supply?
This section outlines the frustrum functions that you need to supply in order to
build a working frustrum. Some functions are optional; what you need to supply
depends on the requred functionality of your application.
The use of the frustrum functions is explained in more detail in Section 3.4, “File
handling”, Section 3.5, “Memory management”, and Section 3.6, “Graphical
output” later on in this chapter.

3.2.1 Required functionality
You must provide the following frustrum functions:

Note: Frustrum functions are referred to throughout this guide using the field
names below. You can decide on the actual function names yourself, however,
since the function names you choose are mapped onto the field names when
the frustrum is registered.

Frustrum control
FSTART start up the frustrum
FSTOP shut down the frustrum
Getting Started With Parasolid 11

. .Supplying A Frustrum
3.2.2 Optional functionality
You can choose whether to implement the following frustrum functions. If you do
not, they should be left as NULL. When you initialize the frustrum, all available
functions are set to NULL, so you can effectively ignore any functions listed here
that you don’t require.

3.3 Registering the frustrum
Before you can start the modeler and make PK calls, you need to register the
frustrum functions with Parasolid. To do this, use the PK function
PK_SESSION_register_frustrum, which takes a list of pointers to the frustrum
functions you have supplied.

You declare and initialize the frustrum in the same way that you set up any option
structure in the PK. The following code extract shows how this might be done.
For more details, refer to Appendix B, “Using the PK Interface”.

File (part data) handling (see Section 3.4, “File handling”)
FFOPRD open all guises of file (except rollback) for reading
FFOPWR open all guises of file (except rollback) for writing
FFREAD read from file
FFWRIT write to file
FFCLOS close file

Memory handling (see Section 3.5, “Memory management”)
FMALLO allocate virtual memory
FMFREE free virtual memory

Frustrum control
FABORT called at the end of an aborted kernel operation
FTMKEY returns sample name keys (used for testing FFOPRD and

FFOPWR)

Graphical output (see Section 3.6, “Graphical output”)
GOOPSG open hierarchical segment
GOSGMT output non hierarchical segment
GOCLSG close hierarchical segment
12 Getting Started With Parasolid

. .File handling
In the code above, note that MyAppStartFrustrum represents a function that you
have actually supplied a definition for, and fstart represents a field required by
PK_SESSION_register_frustrum.
A specific example showing how the frustrum is registered in the Parasolid
Example Application is described in Section 4.3, “The frustrum”.

3.4 File handling
The files that Parasolid uses for storing part data are referred to as ‘transmit’ or
‘XT’ files. In order to transfer data through the frustrum, you need to write to and
read from these files. Parasolid can also use several other file types, as
described in Section 3.4.2, “File types and file extensions”. You need to decide
the format and location of these files in order to write your frustrum functions.

3.4.1 Structuring the file system for your
application
You can configure Parasolid to handle many different kinds of archiving systems,
such as:

� A controlled directory structure, in which part files are saved as individual
files on the host computer, or

� A database that integrates Parasolid part files with application-specific
information.

Your application should provide the following functionality for managing the files
generated and required by Parasolid.

� Deleting parts from an archive.
� Keeping a record of, and listing, the keys used to archive parts, in the current

session and in previous sessions.

PK_SESSION_frustrum_t fru; /* Declare fru as the frustrum */
PK_SESSION_frustrum_o_m(fru);
 /* Initialize the frustrum functions */
/* Point to each of the frustrum functions you are supplying */
fru.fstart = MyAppStartFrustrum;
fru.fabort = MyAppAbortFrustrum;
fru.goopsg = MyAppOpenSeg;
/* Note: Many functions missing from the list above */
/* Register the frustrum with Parasolid */
PK_SESSION_register_frustrum(&fru);
Getting Started With Parasolid 13

. .Supplying A Frustrum
The frustrum is passed a key (a text string) that identifies the part. This key
can be used as a filename or as an index into the database, depending on
the archiving system you have chosen.

3.4.2 File types and file extensions
Parasolid uses several file types, each of which can be written in one of the
following formats:

� Neutral binary (recommended)
� Machine-dependent binary
� Text
At a minimum, your application must support Transmit files. Depending on its
functionality, it may also need to deal with some of the other file types described
here.

Each file type has a recommended file extension that is also dependent on the
file system you are writing to or reading from, as shown in the table below. Note
that file extensions ending in _t or _txt denote text-based formats, and
extensions ending in _b or _bin denote binary-based formats.

File type UNIX/NTFS
extensions

FAT
extensions

Comment

Transmit
(Part)

.xmt_txt

.xmt_bin
.x_t
.x_b

Transmit (or XT) files are used to store
part or assembly data and are often
used for transferring data between
Parasolid-powered systems.

Schema .sch_txt
.sch_bin

.s_t

.s_b
Parasolid uses schema files to read and
write data from and to previous versions
of Parasolid.

Journal .jnl_txt
.jnl_bin

.j_t

.j_b
Journal files are used to keep a record of
all of the commands issued to Parasolid
within a session. Journal files can be
used for debugging.

Snapshot .snp_txt
.snp_bin

.n_t

.n_b
A snapshot file is a memory dump of a
Parasolid session. These files are very
rarely used, but are sometimes useful
for reproducing faults.
14 Getting Started With Parasolid

. .File handling
The file handling functions in your frustrum must handle all the file types that you
decide to support, adding the appropriate extensions. These functions may also
test whether a file resides on a DOS style FAT device or a long filename NTFS
type device before adding the extension, unless you decide to support only the
FAT extensions, regardless of the filesystem. If you support both FAT and NTFS
extensions, files can simply be renamed when transferring between the different
systems. An example that shows how extensions can be added to filenames is
described in Section 4.4.2, “File extensions” in Chapter 4, “The Example
Application”.

3.4.3 Example file handling code
Section 4.4, “File handling” gives details about how to implement file handling in
the frustrum.

Partition .xmp_txt
.xmp_bin

.p_t

.p_b
Partitions enable related parts to be
archived as a single item. Rollback
information allows your application to
return a Parasolid session to an earlier
state. If your application uses either of
these mechanisms, the relevant data is
written to a partition file. See Chapter A,
“Further Implementation Decisions” for
more information.

Delta
transmit

.xmd_txt

.xmd_bin
.d_t
.d_b

Delta files are used within the rollback
mechanism and are controlled by a
separate suite of functions called the
delta frustrum. Delta transmit files are an
aggregate of all existing delta files, and
their creation is controlled by the
frustrum. See Chapter A, “Further
Implementation Decisions” for more
information.

File type UNIX/NTFS
extensions

FAT
extensions

Comment
Getting Started With Parasolid 15

. .Supplying A Frustrum
3.5 Memory management
You need to supply two memory management functions in the frustrum that allow
Parasolid to allocate and free memory for its use. These functions control the
way that memory is allocated to and freed for use in:

� Internal calculations
� Data structure storage

The memory management functions are FMALLO (allocate virtual memory) and
FMFREE (free virtual memory).These functions map closely to the C functions
malloc and free, and any function definitions you supply should be type-
compatible with malloc and free.

You could consider implementing some buffering in order to improve
performance compared to the standard functions. For example, with suitable
definitions for FMALLO and FMFREE:
� Small amounts of memory (around 0.1 MBytes) could be served by a pool of

memory set up by FSTART and managed by your application.
� Large amounts of memory (e.g. 1MB or more) could be requested from the

operating system.

The memory management functions are registered when registering the
frustrum.

A specific example showing how memory management functions are used in the
Parasolid Example Application is described in Section 4.5, “Memory
management”.

3.6 Graphical output
If your application needs to display parts – whether by rendering them on screen,
or printing them to a plotter or laser printer – you need to do three things:

� Call PK rendering functions to obtain the necessary information from
Parasolid.

� Supply a set of functions known as the GO (Graphical Output) interface to
interpret that information.

� Supply a graphics library that is used to render the parts on the appropriate
device.

When a call is made to one of the PK rendering functions, the graphical data
output by Parasolid is passed to the GO functions, which catch and interpret the
data, filter it, and use the functionality of the graphics library to render the parts
on the appropriate device.
16 Getting Started With Parasolid

. .Graphical output
3.6.1 Calling PK rendering functions
In order to render part data, your application needs to call a PK rendering
function. There are three such functions available:

Each of these functions uses the supplied GO functions to pass graphical data to
the appropriate graphics library.

The PK outputs graphical information in the form of segments. These correspond
to identifiable portions of the model being rendered, and can be curves or facets
(depending on the PK function used). There are two types of segments:

� Single-level segments, which contain data describing a curve or facet to be
drawn.

� Hierarchical segments, which usually contain other hierarchical or single-
level segments.

3.6.2 Supplying GO functions
Parasolid passes segment data to the GO functions. These functions use the
supplied graphics libraries and may generate, for example, screen pictures, plot
files and laser print files.
There are three GO functions in the frustrum. They all take the same arguments,
but interpret them in different ways.

Function Description
PK_GEOM_render_line Renders a geometric entity as a wire frame drawing

that is independent of the view required.
PK_TOPOL_render_line Renders a list of topological entities as either:

� A view independent wire frame drawing
� A view dependent wire frame drawing
� A hidden line drawing

PK_TOPOL_render_facet Generates a faceted representation of topological
entities.

Note: It is possible to generate faceted information without using the GO, by
using the function PK_TOPOL_facet. This approach may be useful, for
instance, if your application needs to perform many calculations on a faceted
representation of the model.
Getting Started With Parasolid 17

. .Supplying A Frustrum
GO functions are registered together with the other frustrum functions. See the
Section 3.3, “Registering the frustrum” for details.
A specific example showing how GO functions are defined in the Parasolid
Example Application is described in Section 4.6, “Graphics”.

3.6.3 Choosing which graphics libraries to use
Parasolid’s graphical data output can be used in conjunction with many different
graphical libraries. You must supply a graphics library for every device you want
to use for rendering output. If your application renders to several different devices
(for instance, it might render to the screen, and print paper copy), then you may
need to supply several different libraries. You can write your own graphics
libraries if you wish, or you can use third party libraries. The GOSGMT function
calls the appropriate libraries in order to perform the necessary rendering.

3.7 Error handling
Parasolid can raise errors in a number of circumstances. For example, if your
application passes incorrect data to a PK function, or a PK function fails in some
way, then Parasolid raises an error. Your application needs to be able to handle
these sorts of errors. This section describes how you go about doing this.

3.7.1 Choosing an error handling strategy
There are two approaches to handling errors from Parasolid.

� Your application can supply and register an error handler with Parasolid. This
error handler is invoked when a PK function is about to return a failure. The
error handler then takes the appropriate action.

� Your application can allow the PK function to complete, examine the returned
value, and take appropriate action, usually by means of a wrapper function.

The strategy you choose probably depends on how errors are handled by the
rest of your application. You are strongly recommended not to mix the two
strategies, if this is possible.

Function Description
GOOPSG Open a hierarchical segment.
GOSGMT Output a single-level segment.
GOCLSG Close a hierarchical segment.
18 Getting Started With Parasolid

. .Error handling
Whichever strategy you choose, the same action needs to be taken. This action
depends on the severity of the error, as supplied in the error call. See Section
3.7.3, “What to do when an error occurs” for more details.

Registering an error handler
You use PK_ERROR_register_callbacks to register an error handler with
Parasolid. When a PK function is about to return an error, the error handler is
passed a standard structure (PK_ERROR_sf_t) containing:

� The function returning the error
� The error severity
� The specific error code
� Other information to assist with isolating the problem
This data is always stored, and can be retrieved again if necessary using
PK_ERROR_ask_last. The data for the last error can be cleared using
PK_ERROR_clear_last.

You can see how an error handler is registered in the Parasolid Example
Application in Section 4.7, “Error handling” in Chapter 4, “The Example
Application”.

3.7.2 Handling non-zero error codes
Every PK function returns an error code that indicates the result of the operation.
If this value is zero – PK_ERROR_no_errors – the operation has completed
successfully and your application can proceed.

However, if this value is non-zero, then the operation has failed to complete.
Each numerical value indicates a predictable error, and your application must
handle it appropriately:
� If your application uses a registered error handler, then the error handler

must examine each return value and take suitable action.
� If your application does not use a registered error handler, then you must

ensure the application itself examines each return value and takes
appropriate action.

Note: Do not assume that a a zero error code means that the operation has
completed exactly as you intended. A zero error code simply means that the
function completed. It is still possible that the operation did not complete in the
way you expected, and, in particular, many PK functions return error tokens
that indicate specific problems in the values passed to the function or the
results produced.
Getting Started With Parasolid 19

. .Supplying A Frustrum
3.7.3 What to do when an error occurs
Whether you register an error handler or decide to handle each error explicitly in
your application code, the action that needs to be taken when an error occurs is
much the same.

The three error severity levels that your application has to manage are:

3.8 Starting and stopping a Parasolid
session
You use the function PK_SESSION_start to start the Parasolid modeler. This
takes an options structure that you can use to specify session specific options, as
described in Section A.4, “Session parameters”.
You use the function PK_SESSION_stop to stop the Parasolid modeler.

 Severity Current State Required Action
Fatal Modeler memory has been

corrupted; rolling back, if
implemented, will not be effective.
You may not be able to restart
Parasolid

Your application should shut
down Parasolid

Serious The parts loaded in Parasolid may
be corrupt

If rollback is implemented,
your application should roll
back to a valid state

Mild The operation failed; the parts
involved were not corrupted

The application can continue
with any Parasolid operation

Warning: You must register the frustrum before attempting to start a Parasolid
session.
20 Getting Started With Parasolid

4
4The Example Application

. .
To complement the overview of frustrum implementation in Chapter 3, “Supplying
A Frustrum”, this chapter describes a simple Parasolid-powered application
whose source code you are free to examine. The Parasolid Example Application
described here is provided on the Parasolid CD for PC platforms.

The Example Application is a Windows NT application that demonstrates how to
combine the various components necessary into a working application. As well
as providing a simple frustrum, it shows you how to make calls to PK functions,
and can be used in a limited way to prototype PK function calls. Because it is
designed specifically to demonstrate all the components of a Parasolid-powered
system, it may not necessarily reflect the optimal design for your application.

The application is written in Microsoft Visual C++ and uses Microsoft Foundation
Classes. It was compiled and built using Microsoft Visual C++ Version 6. It uses
the OpenGL graphics library for displaying part models.

The compiled application can be run on Windows NT4, Windows 2000, and 95/
98.

Full documentation for the Example Application is provided in the manual Using
the Example Application.

Note: PS/Workshop, supplied on the Parasolid CD for PC platforms, is a
dedicated prototyping application that you can use to test calls to PK code
under Windows NT and Windows 2000. The Example Application is provided
for demonstration purposes only and should not be used for extensive code
prototyping.
Getting Started With Parasolid 21

. .The Example Application
4.1 Building and running the Example
Application
The Parasolid CD contains the complete set of files necessary to examine, build,
and run the Example Application using Microsoft Visual C++ running under
Windows NT 4 or 2000. To build and run the Example Application:

� Place the Parasolid CD into the CD-ROM drive on your computer.
� Use an archiving application such as WinZip to extract the file

X:\Example_Application\ExampleApp.zip to a folder on your local
hard disk (where X represents the name of your CD-ROM drive).

� To load the Example Application into Visual C++, double-click the file
Source\Example App.dsw in the folder that you extracted application to.

� Press Ctrl+F5 to build the Example Application and run it. Follow any
prompts from Visual C++ to build the necessary files.

The Example Application has a single window that contains a menu bar, toolbar,
and a viewing area that is initially empty.

Figure 4–1 The Example Application

Click to run PK
code.

Output from PK calls
is displayed here.

Click to manipulate
the displayed image.
22 Getting Started With Parasolid

. .Calling PK functions
If the PK calls in the code you are testing are written as a series of steps, then
click to execute each step in turn, examining the output along the way. See
Section 4.2, “Calling PK functions”, for details about structuring code this way.

4.2 Calling PK functions
To make use of Parasolid functionality in the Example Application, you add PK
function calls to the CMyCode class; specifically, to the function
CMyCode::RunMyCode. This function is reserved for PK function calls so that
you can evaluate Parasolid functionality easily. You can find the definition for this
function in the file MyCode.cpp.

You can add code that is structured as a single step, or as multiple steps using a
case statement. When running code that contains multiple steps, click the
button in the Example Application to execute the next step. The following
example shows a case statement that consists of two steps: a block is drawn in
the first step, and a cylinder is drawn in the second step.
Getting Started With Parasolid 23

. .The Example Application
The model display is updated in the viewing area of the Example Application
whenever:
� CMyCode::RunMyCode completes an additional step (if PK code uses a

case statement).
� CMyCode::RunMyCode finishes executing (if PK code doesn’t use a case

statement).
� You click one of the buttons in the Example Application’s toolbar.

When the display is updated, the Example Application checks for new parts in the
session and re-facets or re-renders according to the selected display type.

int CMyCode::RunMyCode(int step)
{
// The code below is sample code. On exiting the function
// the bodies that exist are drawn

static PK_BODY_t block;
static PK_BODY_t cylinder;
CString text;
BOOL finished = FALSE;
switch(step)
{
case 1:

/* Create a block
 Size: 10 x 10 x 10.
 Location & orientation: default (pass NULL
 as pointer to the basis_set argument).
*/

PK_BODY_create_solid_block
(10.0, 10.0, 10.0, NULL, &block);

break;
case 2:
/* Create a cylinder
Radius: 2.5
Height: 20.0
Location & orientation: default. */

PK_BODY_create_solid_cyl

(2.5, 20.0, NULL, &cylinder);
break;

default:
finished = 1;

}
return finished;

}

24 Getting Started With Parasolid

. .The frustrum
4.3 The frustrum
The Example Application uses a very simple frustrum that is set up and initialized
by functions in the CSession class (see the file session.cpp).

The CSession::Start function sets up and registers the frustrum, initializing
further functions that are needed for opening, closing, reading and writing files.
The sequence of events involved in setting up and registering the frustrum is as
follows:

� A frustrum is declared, and then initialized using a macro.
� All the required frustrum functions are declared.
� The frustrum is registered using PK_SESSION_register_frustrum.

4.4 File handling
File handling in the Example Application is very straightforward. The application
does not use its own database; it only uses Parasolid data files when reading and
storing part information.
The following frustrum functions are used for file handling:

� OpenReadFrustrumFile (FFOPRD)
� OpenWriteFrustrumFile (FFOPWR)
� CloseFrustrumFile (FFCLOS)
� ReadFromFrustrumFile (FFREAD)
� WriteToFrustrumFile (FFWRIT)

You can find the definitions for all these functions in the file frustrum.cpp, or listed
under the Globals definitions in the ClassView tab of the Workspace window in
Visual C++.

4.4.1 File types
The Example Application supports a subset of the file types described in the
section Section 3.4.2, “File types and file extensions”. In particular, delta files are
not supported, because no rollback mechanism has been implemented.
Journal files are supported, but only when journaling is switched on when setting
up and starting the modeler, as described in Section A.4, “Session parameters”.

Note: The ability to add PK function calls to the Example Application code is
provided for demonstration purposes only. You should use PS/Workshop if you
want to prototype Parasolid functionality.
Getting Started With Parasolid 25

. .The Example Application
4.4.2 File extensions
The Example Application uses three character extensions for all file types.
Attaching the correct file extension for a given type of file is a two-stage process:

� Determine the file type to use, and attach the first part of the file extension.
� Determine the file format to use (text or binary), and attach the last part of the

file extension.

These stages are performed by the filetype_guise_string and
filetype_format_string functions, respectively. Both these functions
return pointers to the relevant parts of the extension. You can find both of these
functions in frustrum.cpp.
Both of these functions are called by the FFOPRD and FFOPRW frustrum
functions. Other frustrum functions used for file handling access the pointer
values returned by these functions directly.

4.5 Memory management
The memory handling functions supplied to Parasolid are defined in
CSession::Start and registered along with other frustrum functions (see the file
session.cpp). These functions, GetMemory (FMALLO) and ReturnMemory
(FMFREE), enable Parasolid to request and relinquish memory. They make use
of the “new” and “delete” operators in C++.

The Example Application manages all the memory associated with entities in the
session, freeing memory when it becomes available. However, it does not free
any output arrays that have been allocated in CRunMyCode, so you should take
care to free memory that is no longer needed when adding functions to
CRunMyCode. For example, if your code calls

PK_BODY_ask_faces(body, nfaces, faces)
then you need to free the returned faces array yourself.

See Appendix B, “Using the PK Interface” for information on how to do this.

4.6 Graphics
The Example Application uses the OpenGL graphics library, and makes calls to
it when starting up the application and when drawing parts. The display is set up
by CExampleAppView::InitOpenGL (in the file OpenGl.cpp), which initializes
colors, pixel format, projection matrices, model matrices, and lights.
The relevant graphics functions are registered with Parasolid in the function
CExampleAppDoc::OnNewDocument (in the file ‘Example AppDoc.cpp’). This
26 Getting Started With Parasolid

. .Error handling
registers the following functions to frustrum functions that handle graphical
output:

� CopenSegment (GOOPSG)
� CcloseSegment (GOCLSG)
� CoutputSegment (GOSGMT)
The definitions of each of these functions can be found in GO.cpp.

As well as opening, closing, and outputting graphical segments supplied by
Parasolid, they also set appropriate colors and material properties using various
calls to Parasolid and OpenGL. The data is filtered to deal with displaying lines,
circles, ellipses and facets separately, and then the appropriate OpenGL function
called.

4.7 Error handling
The Example Application takes a simple approach to handling Parasolid errors;
a function called CSession::PKerrorHandler is registered with Parasolid as an
error handler, and this is called whenever an error is returned.

The error handler takes the character string corresponding to the error and
displays this on the screen in a standard Windows message box. No corrective
action is performed.
The error handler is defined and registered in the CSession::Start function
(session.cpp).

4.8 Starting the Parasolid session
The Parasolid modeler is started towards the end of the call to CSession::Start
(session.cpp). This is done using the PK_SESSION_start function, which uses
an options structure in the normal way.

If required, specific session options can be set between the macro call and the
function call. See Section A.4, “Session parameters” for more details.
Getting Started With Parasolid 27

. .The Example Application
28 Getting Started With Parasolid

A

. .

AFurther Implementation
Decisions
This appendix discusses other functionality that you may want to consider using
when integrating your application with Parasolid. None of the issues discussed
here are essential in order to get a working frustrum. For more information on any
of the functionality discussed here, refer to the full Parasolid documentation.

A.1 RTE and interrupt handling
In addition to an error handler, you can register a signal handler with the
operating system to recover from run-time errors and/or user interrupts.

If you don’t use a signal handler, then your application will crash when a run-time
error occurs.

A.2 Rollback
Parasolid has two types of rollback, both of which are available through the same
mechanism.

� Session level rollback allows your application to roll back the contents of the
entire session.

� Partition level rollback allows your application to rollback an individual
partition independently of other partitions.

If implemented, you can use rollback in your application in several ways. For
example:
� To revert to a known state after a failed operation (i.e. as an undo facility).
� To mark the major milestones in the design history of a part within a feature

modeling environment.

You could implement partition level rollback so that each partition has only one
part, users could make changes to individual parts and roll them back without
affecting other parts in the session.

Rollback is enabled by registering a delta frustrum before the session is started.
The delta frustrum performs a similar function to the standard frustrum, and
specifies how rollback (delta) information is written and read.
Getting Started With Parasolid 29

. .Further Implementation Decisions
A.3 Tracking entities
Your application may need to track various entities within any Parasolid session.
For example, tracking is required in order to:

� Update graphical display information
� Track entities in a feature-based system

There are several ways of tracking entities in Parasolid, and you need to decide
which approach you want to take. The most straightforward ways of tracking
entities are:

� Using tracking information returned in PK function calls
� Using attribute information attached to entities. See Chapter 46, “Attributes”,

in the Functional Description for details.
� Setting up a bulletin board to record certain events within a Parasolid

session. See Chapter 56, “Bulletin Board” in the Functional Description for
details.

A.4 Session parameters
There are a number of session level parameters that you can set up to alter the
behavior for the whole session. Example of session-wide parameters include:

Parameter Description
Continuity and self
intersection
checking

These settings affect the level of checking performed by
various checking functions, and also control whether G1-
discontinuous or self-intersecting geometry can be
attached to topology.

General topology This setting allows general bodies – such as non-
manifold or disconnected bodies – to be created from
Boolean operations.

Roll forward This option defines whether a session can be rolled
forward at any stage. The setting of this option has an
affect on the rollback management strategy your
application needs to use.

SMP (Symmetric
Multi Processing)

This option enables Parasolid to make best use of
machines that have more than one processor.

Journaling A journal file is a record of all the Parasolid commands
that are called within a session. It is mainly useful for
debugging purposes.
30 Getting Started With Parasolid

. .

Session level parameters are set just before the Parasolid session is started. For
example, journaling can be switched on for the current session as follows:

PK_SESSION_start_o_t options;
PK_SESSION_start_o_m(options);
options.journal_file = "c:\\temp\\test"
PK_SESSION_start(&options);

Warning: Journaling is a useful debugging tool, but you should not turn it on by
default in your application, as this can adversely affect performance. Journaling
is typically used as an internal debugging tool, although if necessary you can
include a switch in your application code that lets the user turn journaling on
when required.
Getting Started With Parasolid 31

. .Further Implementation Decisions
32 Getting Started With Parasolid

B
BUsing the PK Interface

. .
B.1 Introduction
The PK interface is a collection of C declarations for tokens, structures and
functions. The complete set of definitions are listed in the file ‘parasolid_kernel.h’
on the Parasolid Release CD. This appendix explains some of the conventions
used for naming and calling functions in the PK.

B.2 PK interface functions
All PK functions have names of the form PK_<CLASS>_<operation>, where

� <CLASS> denotes the class of entity on which the function can be called,
and

� <operation> is a verb/noun combination that describes the operation to be
performed.

Parasolid entities are organized in an object-oriented class hierarchy such that a
function that is called on <CLASS> can also be called on all the subclasses of
<CLASS>. For example, PK_CURVE_ask_fin can be called on any subclass of
CURVE, such as CIRCLE, ELLIPSE, or LINE.
Each function has a fixed set of arguments: some are used to supply data, and
others are used to return information. Argument types are simple values, arrays,
and structures.

You must set each argument explicitly when calling PK functions, rather than
omitting them completely. This is made easier by the use of option structures and
initialization macros.

B.2.1 Types associated with PK classes
When a PK class has an object belonging to it (which it nearly always has) the
name of the C type for that object is of the form PK_<CLASS>_t.

A PK class may have other types associated with it – structures or token
enumerations – and these have names of the form PK_<CLASS>_<text>_t. An
example of this is PK_SESSION_frustrum_t, which is the type you use when
declaring a frustrum. When these types are more directly associated with a
particular function their names reflect this, as there are naming conventions for
options structures, type classifications, etc.
Getting Started With Parasolid 33

. .Using the PK Interface
B.2.2 Using function arguments correctly
A PK function argument is used either to receive information from the application,
or to return information to your application, but never both.

For example, given a PK function with the following declaration:

You should never call this function as follows, since the results are undefined:
PK_THING_do_something(&my_thing, &my_thing);

B.3 Types of structures
Much of the information passed in PK function code is collected together in
related groups, or structures. There are three basic structures that you need to
be aware of:

� Options structures, used to pass parameter values in function calls.
� Standard forms, used as templates for classes of information.
� Return structures, used to return values from a function call.

B.3.1 Passing arguments in options structures
Optional arguments and option switches passed to functions are generally
collected together in a single structure and passed as one argument, known as
an options structure. Option structures are named by adding the string “_o_t” to
the function name.

PK_ERROR_code_t PK_THING_do_something
(
/* received arguments */
const PK_THING_t *in_thing
/* returned arguments */
PK_THING_t *const out_thing
)

Warning: The order in which entities are returned from a given PK function,
and the underlying geometric representations of faces and edges, are not
guaranteed to be consistent between different versions of Parasolid.
Consequently, your application should not depend on either of these things.

Warning: The first field of any options structure is the version number
(o_t_version). Your application must never set or alter this value.
34 Getting Started With Parasolid

. .

Using macros to initialize options structures
Before you can use an options structure, every field in the structure must be
given a value. To make this easier, a macro is available for each option structure
that sets every field in the structure to a default value.

After calling the macro, you just need to set any fields that you want to use a
different value for. Functions themselves do not have a default action; they
always reference the given option structure.

To get the macro name for a given option structure replace the “_o_t” string at the
end of the structure name with “_o_m”.
An example call to a PK function that uses an options structure is shown below:

B.3.2 Standard form structures
Many classes have a special structure known as a “standard form”, that needs to
be used when creating instances of that class. You can think of a standard form
as a template for given class instance. Standard forms always have names of the
form PK_<CLASS>_sf_t.

Most entities have associated standard forms that contain the definitions of
curves, surfaces, and so on required for those entities (though some, such as
bodies and vertices, do not). Some other classes also have an associated
standard form (such as PK_AXIS1_sf_t), even though there is no equivalent
entity.

/* Declare entities */
PK_FACE_t face;
PK_TOPOL_t topol;
PK_VECTOR_t point;
point.coord[0] = 5.0;
point.coord[1] = 5.0;
point.coord[2] = 0.0;
/* Declare options structure */
PK_FACE_contains_vectors_o_t option;
/* Initialize options structure fields */
PK_FACE_contains_vectors_o_m(option);
option.vectors = &point; /* Override default values for two
fields*/
option.n_vectors = 1;
/* Make the function call */
pk_ifail = PK_FACE_contains_vectors (face, &option, &topol);
/* Test for pk_ifail */
Getting Started With Parasolid 35

. .Using the PK Interface
The same standard form for a class is used whether the calling function is an
input function or an output function. For example, PK_CYL_sf_t is used by both
PK_CYL_create and PK_CYL_ask.

The following example shows how a cylinder is created using the standard form
for a cylinder:

B.3.3 Return structures
Some PK functions pass information back to your application using a return
structure. Return structures are used when a lot of related information needs to
be handed back to your application, such as tracking information describing the
changes made to a part as the result of a function call. The names of return
structures end in “r_t” – for example, the return structure that returns information
about which topology was split, deleted, or created, is called
PK_TOPOL_track_r_t.

B.4 Memory management for returned
arguments
Returned arguments to PK functions consume variable amounts of data that are
returned from the PK as C arrays. The extent to which you need to control
memory allocation for these arguments depends on how easy it is to determine
how much memory is required for them.

PK_CYL_t my_cylinder;
PK_CYL_sf_t my_cyl_sf;
my_cyl_sf.basis_set.location.coord[0] = 1.0;
my_cyl_sf.basis_set.location.coord[1] = 2.0;
my_cyl_sf.basis_set.location.coord[2] = 3.0;
my_cyl_sf.basis_set.axis.coord[0] = 1.0;
my_cyl_sf.basis_set.axis.coord[1] = 0.0;
my_cyl_sf.basis_set.axis.coord[2] = 0.0;
my_cyl_sf.basis_set.ref_direction.coord[0] = 0.0;
my_cyl_sf.basis_set.ref_direction.coord[1] = 1.0;
my_cyl_sf.basis_set.ref_direction.coord[2] = 0.0;
my_cyl_sf.radius = 5;
PK_CYL_create(&my_cyl_sf, &my_cylinder);
36 Getting Started With Parasolid

. .
B.4.1 Memory management functions in the PK
Your application allocates and frees memory for variable length return arguments
using PK_MEMORY functions. These functions ensure that your application can
free memory when it has been allocated by Parasolid, and that space is freed
consistently regardless of where it was originally allocated. If the functions are
not registered, then the default memory allocation and freeing functions for the
operating system are used.
� PK_MEMORY_alloc allocates space for a returned argument before calling

the PK function. This function is called automatically by Parasolid when
allocating space dynamically for memory. Your application could use it for
other types of memory.

� Use PK_MEMORY_free to free space used by a returned argument after the
PK function has succeeded.

If a PK function fails, and has already allocated space for variable length returns,
then Parasolid frees the space by calling the FMFREE function directly.

The example below demonstrates how to use PK_MEMORY_free to free space
used by a return argument once it is no longer needed.

Requirement Procedure
If the size of the
argument is known at
compile time.

Your application declares the space at compile time
and passes a pointer to it to Parasolid. Arguments
like this are shown in the PK function headers as, for
example, type name[3]. You do not need to explicitly
free space declared in this way.

If the size of the
argument can be
determined by your
application at run
time before making
the function call.

Your application allocates space at run-time and
passes a pointer to it to Parasolid. Arguments like this
are shown in the PK function headers as, for example,
type name[] or type *const name. Your
application needs to free the space allocated when it is
no longer required.

In all other cases
Parasolid
dynamically allocates
space to return the
array, using
PK_MEMORY_alloc.

Your application declares a pointer to the returned
type, and passes a pointer to this pointer to
Parasolid. Parasolid sets this pointer to point to the
returned information. Arguments like this are shown in
the PK function headers as, for example, type
**const name. Your application needs to free the
space allocated when it is no longer required. This is
described in Section B.4.1, “Memory management
functions in the PK”.
Getting Started With Parasolid 37

. .Using the PK Interface
B.4.2 Return structures containing pointers
In general, whenever the returned argument is a pointer to a pointer, Parasolid
allocates space for whatever is pointed to at the end of the line, and your
application frees that space when it is finished with, using PK_MEMORY_free.
You can spot two levels of indirection like this easily by looking for a declaration
of the form:

type **const name
Sometimes, a PK function returns a pointer to a structure that itself contains a
pointer. In this case, it can be harder to spot the second level of indirection. In
particular, standard forms (structures that represent the data encapsulated by an
object of a particular class) have a fixed size, but they may point to variable
length arrays.
For example, PK_BCURVE_ask returns a standard form PK_BCURVE_sf_t
which, because it is a fixed size, is declared as:

PK_BCURVE_sf_t *const bcurve_sf
The structure PK_BCURVE_sf_t contains the field:

double *knot
and space for the knot vector is allocated by Parasolid.

Most PK functions that return information using return structures have equivalent
memory destructing functions to free up all the memory allocated to the structure
in one call. The names of these functions end in “_r_f” – for example, the freeing
function for the return structure PK_blend_rib_r_t is PK_blend_rib_r_f.

B.4.3 Optional return arguments
You can set some return arguments declared in the form

type **const name
to NULL in the function call to indicate that this information is not to be returned
and no space is to be allocated for it. Such arguments are indicated by the word
‘optional’ in the function header.

PK_BODY_t my_body;
int n_faces;
PK_FACE_t *my_faces;
PK_BODY_ask_faces(my_body, &n_faces, &my_faces);
...
...
...
PK_MEMORY_free(my_faces);
38 Getting Started With Parasolid

. .

An example of an optional return argument is shown below:

In order to just return the number of faces, rather than the faces themselves, set
the faces argument to NULL in the function call as follows:

This use of NULL is only allowed where it is explicitly documented. Functions
which have option structures never have optional return arguments.

B.5 Example code
The following simple example demonstrates how the PK interface is used. This
example sets an attribute on a face, but ignores the possibility of errors.

PK_ERROR_code_t PK_BODY_ask_faces
(
--- received arguments ---
PK_BODY_t body, --- a body
--- returned arguments ---
int *const n_faces, --- number of faces (>= 0)
PK_FACE_t **const faces --- faces (optional)
)

PK_ERROR_code_t status;
PK_BODY_t body = ...
int n_faces;
status = PK_BODY_ask_faces (body, &n_faces, NULL);

/* Assume a face in a valid model has been selected */
PK_FACE_t face = ... ;
/* Local variables for attribute code */
PK_ERROR_code_t status;
PK_ATTDEF_t colour_defn;
PK_ATTRIB_t colour_attrib;
double rgb[3];
/* Locate the definition of the */
/* system defined color attribute */
status = PK_ATTDEF_find(“SDL/TYSA_COLOUR”, &colour_defn);
/* Create a new attribute of type color */
/* attached to the given face */
status = PK_ATTRIB_create_empty

(face, colour_defn, &colour_attribute);
/* Fill in the fields of the attribute */
/* with the desired values */
rgb[0] = 0.25; rgb[1] = 0.25; rgb[2] = 0.5;
status = PK_ATTRIB_set_doubles(colour_attrib, 0, 3, rgb);
Getting Started With Parasolid 39

. .Using the PK Interface
B.6 Integrating with MS Visual Studio
If you are using Microsoft Visual Studio to develop your Parasolid-powered
application, you need to integrate Parasolid’s DLL, LIB, and header files correctly
into your project environment. This is done as follows:

� Include the file pskernel.dll in either the same folder as your application
executable, or somewhere on your PATH.

� Add #include <parasolid_kernel.h> to any source code files that call
PK functionality.

� Add the pskernel.lib object library to the MS Visual C++ environment, as
described in Section B.6.1.

� Add Parasolid header files to the MS Visual C++ environment as an
additional include directory, as described in Section B.6.2.

B.6.1 Adding pskernel.lib to MS Visual C++
To add pskernel.lib into the MS Visual C++ environment, choose
Project > Settings to display the Project Settings dialog, and follow the
instructions in Figure B–1.

Figure B–1 Adding pskernel.lib to the MS Visual Studio environment

2. Choose Input from the
Category list.

3. Add pskernel.lib to the list
of Object/library modules.

1. Click the Link tab.

4. Add the pathname of the
directory containing
pskernel.lib to the
Additional library path list.
40 Getting Started With Parasolid

. .
B.6.2 Specifying an additional include directory
You can add one or more directories to the list of directories that are searched for
include files. Choose Project > Settings to display the Project Settings dialog,
and follow the instructions in Figure B–2.

Figure B–2 Adding an additional include directory to MS Visual Studio

2. Choose Preprocessor
from the Category list.

3. Add one or more pathnames
to the list of Additional
include directories.

1. Click the C/C++ tab.
Getting Started With Parasolid 41

. .Using the PK Interface
42 Getting Started With Parasolid

	Table of Contents
	Introduction
	1.1 Some assumptions

	Application Design
	2.1 Downward interfaces
	2.1.1 The frustrum
	2.1.2 Graphical output

	2.2 Calls to Parasolid functions
	2.2.1 Managing Parasolid errors

	Supplying A Frustrum
	3.1 Introduction
	3.2 What code do you need to supply?
	3.2.1 Required functionality
	3.2.2 Optional functionality

	3.3 Registering the frustrum
	3.4 File handling
	3.4.1 Structuring the file system for your application
	3.4.2 File types and file extensions
	3.4.3 Example file handling code

	3.5 Memory management
	3.6 Graphical output
	3.6.1 Calling PK rendering functions
	3.6.2 Supplying GO functions
	3.6.3 Choosing which graphics libraries to use

	3.7 Error handling
	3.7.1 Choosing an error handling strategy
	Registering an error handler

	3.7.2 Handling non-zero error codes
	3.7.3 What to do when an error occurs

	3.8 Starting and stopping a Parasolid session

	The Example Application
	4.1 Building and running the Example Application
	4.2 Calling PK functions
	4.3 The frustrum
	4.4 File handling
	4.4.1 File types
	4.4.2 File extensions

	4.5 Memory management
	4.6 Graphics
	4.7 Error handling
	4.8 Starting the Parasolid session

	Further Implementation Decisions
	A.1 RTE and interrupt handling
	A.2 Rollback
	A.3 Tracking entities
	A.4 Session parameters

	Using the PK Interface
	B.1 Introduction
	B.2 PK interface functions
	B.2.1 Types associated with PK classes
	B.2.2 Using function arguments correctly

	B.3 Types of structures
	B.3.1 Passing arguments in options structures
	Using macros to initialize options structures

	B.3.2 Standard form structures
	B.3.3 Return structures

	B.4 Memory management for returned arguments
	B.4.1 Memory management functions in the PK
	B.4.2 Return structures containing pointers
	B.4.3 Optional return arguments

	B.5 Example code
	B.6 Integrating with MS Visual Studio
	B.6.1 Adding pskernel.lib to MS Visual C++
	B.6.2 Specifying an additional include directory

