
Parasolid V13.0

Downward Interfaces

June 2001 

Important Note
This Software and Related Documentation are proprietary to Unigraphics Solutions Inc. 

© Copyright 2001 Unigraphics Solutions Inc. All rights reserved 
Restricted Rights Legend: This commercial computer software and related documentation are 
provided with restricted rights. Use, duplication or disclosure by the U.S. Government is subject to 
the protections and restrictions as set forth in the Unigraphics Solutions Inc. commercial license for 
the software and/or documentation as prescribed in DOD FAR 227-7202-3(a), or for Civilian 
agencies, in FAR 27.404(b)(2)(i), and any successor or similar regulation, as applicable. 
Unigraphics Solutions Inc. 10824 Hope Street, Cypress, CA 90630

This documentation is provided under license from Unigraphics Solutions Inc. This documentation 
is, and shall remain, the exclusive property of Unigraphics Solutions Inc. Its use is governed by the 
terms of the applicable license agreement. Any copying of this documentation, except as permitted 
in the applicable license agreement, is expressly prohibited.

The information contained in this document is subject to change without notice and should not be 
construed as a commitment by Unigraphics Solutions Inc. who assume no responsibility for any 
errors or omissions that may appear in this documentation.

Parker’s House
46 Regent Street

Cambridge CB2 1DP
UK

Tel: +44 (0)1223 371555
Fax: +44 (0)1223 316931

email: ps-support@ugs.com
Web: www.parasolid.com



Trademarks
Parasolid is a trademark of Unigraphics Solutions Inc. 
HP and HP-UX are registered trademarks of Hewlett-Packard Co.

SPARCstation and Solaris are trademarks of Sun Microsystems, Inc.

Alpha AXP and VMS are trademarks of Digital Equipment Corp.
IBM, RISC System/6000 and AIX are trademarks of International Business Machines Corp.

OSF is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Microsoft Visual C/C++ and Window NT are registered trademarks of Microsoft Corp.
Intel is a registered trademark of Intel Corp.

Silicon Graphics is a registered trademark, and IRIX a trademark, of Silicon Graphics, Inc.



ATable of Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 1 Introduction to the Frustrum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .7
1.1 Introduction 7

1.1.1 Dummy frustrum 7
1.2 Summary of functions 8

1.2.1 Initialization 9
1.2.2 Memory management 9

1.3 Abort recovery 9
1.4 Frustrum errors 10

1.4.1 Prediction errors 10
1.4.2 Exception errors 10
1.4.3 Illegal call errors 11

1.5 Validation tests 11
1.5.1 TESTFR – invokes the verification tests for the frustrum 12

 2 File Handling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
2.1 Introduction 15

2.1.1 Key names vs. file names 15
2.1.2 Filename extensions 15
2.1.3 File guises 16
2.1.4 File header 17
2.1.5 Number of files open concurrently 17

2.2 Unicode filenames 17
2.3 File formats 18

2.3.1 Text and binary 18
2.3.2 Application I/O 19
2.3.3 Portability 19

2.4 Characteristics of different file guises 20
2.4.1 FFCSNP 20
2.4.2 FFCJNL 20
2.4.3 FFCXMT 20
2.4.4 FFCSCH 20
2.4.5 FFCLNC 21
2.4.6 FFCXMP 21
2.4.7 FFCXMD 21
2.4.8 FFCDBG 21

2.5 Open modes 22
2.5.1 open_read 22
Downward Interfaces 3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.2 open_new 22
2.5.3 open_protected 22
2.5.4 Summary of open modes 23

2.6 Explanation of the special characters in a journal file 23

 3 File Header Structure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27
3.1 Introduction 27
3.2 Structure of file header 27

3.2.1 Format of the preamble 28
3.2.2 Format of part data 28

3.3 Example of simple file header 29
3.4 Syntax of keyword definitions 29

3.4.1 Escape sequences 30
3.5 Pre-defined keywords 31

3.5.1 Part 1 data 32
3.5.2 Part 2 data 32
3.5.3 Part 3 data 33

 4 Graphical Output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35
4.1 Introduction 35
4.2 Graphical output functions 35
4.3 Structure of line data output 35

4.3.1 Segment hierarchy 36
4.3.2 Graphical data for assemblies 37
4.3.3 Notes 37

4.4 Segment output functions 38
4.4.1 Tags 38
4.4.2 Line type 38
4.4.3 Geometry 42
4.4.4 Segment types 47

4.5 Interpreting regional data 54
4.5.1 Adjacent faces 55
4.5.2 Point indices 55

4.6 Graphical output of pixel data 55

 5 Registering the Frustrum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  57
5.1 Introduction 57
5.2 Object-file frustrum 57
5.3 Registered frustrum 57
5.4 Application I/O 59

 A Frustrum Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61
4 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.1 Introduction 61
A.2 FSTART – Start up the Frustrum 61
A.3 FABORT – Called at the end of an aborted kernel operation 61
A.4 FSTOP – Shut down the Frustrum 62
A.5 FMALLO – Allocate virtual memory 62
A.6 FMFREE – Free virtual memory 63
A.7 FFOPRD – Open all guises of file for reading 63
A.8 FFOPWR – Open all guises of file for writing 64
A.9 UCOPRD – Open various guises of file for reading using Unicode key 65
A.10UCOPWR – Open various guises of file for writing using Unicode key 66
A.11FFCLOS – Close file 66
A.12FFREAD – Read from file 67
A.13FFWRIT – Write to file 67
A.14FTMKEY – Returns sample name keys 68

 B Graphical Output Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   69
B.1 Introduction 69
B.2 GOSGMT – output non hierarchical segment 69
B.3 GOOPSG – open hierarchical segment 78
B.4 GOCLSG – close hierarchical segment 80

 C PK_DELTA Functions  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   83
C.1 Introduction 83

C.1.1 Example PK_DELTA frustrum code 83
C.1.2 Criteria of use 84
C.1.3 Registering the rollback frustrum functions 84

 D PK_MEMORY Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   87
D.1 Introduction 87

D.1.1 Registering the memory management functions 87

 E Application I/O Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   89
E.1 Introduction 89

E.1.1 Registering the application I/O functions 89

 F Attribute Callback Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   93
F.1 Introduction 93

F.1.1 Registering the attribute callback functions 93

 G Frustrum Tokens and Error Codes  .  .  .  .  .  .  .  .  .  .  .  .  .   97
Downward Interfaces 5



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G.1 Introduction 97
G.2 Ifails 97
G.3 File guise tokens 97
G.4 File format tokens 98
G.5 File open mode tokens 98
G.6 File close mode tokens 98
G.7 Foreign geometry ifails 98
G.8 Foreign geometry operation codes 99
G.9 Foreign geometry evaluator codes 99
G.10Rollmark operation codes 99

 H Go Tokens and Error Codes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  101
H.1 Introduction 101
H.2 Ifails 101
H.3 Codes 101
H.4 Line types 102
H.5 Segment types 102
H.6 Error codes 103

 I Legacy Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  105
I.1 Introduction 105
I.2 Pixel drawing functions 105

I.2.1 GOOPPX – open output of encoded pixel data 105
I.2.2 GOPIXL – output encoded pixel data 105
I.2.3 GOCLPX – close output of encoded pixel data 106

I.3 Rollback file handling functions 106
I.3.1 FFOPRB – open rollback file 106
I.3.2 FFSEEK – reset file pointer 107
I.3.3 FFTELL – output file pointer 107

Index . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  109
6 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1Introduction to the
Frustrum
1.1 Introduction
The Frustrum is a set of functions which must be written by the application 
programmer. They are called by Parasolid to perform the following tasks:
� Frustrum control
� File (part data) handling
� Memory handling
� Graphical output
� Foreign Geometry support (if required)

Detailed information on the Frustrum’s file handling functionality is in Chapter 2, 
“File Handling”.

The standard format of file headers which the Frustrum should read and write is 
described in Chapter 3, “File Header Structure”.
This chapter introduces the Frustrum functions; their interfaces are defined in 
Appendix A, “Frustrum Functions”.

1.1.1 Dummy frustrum
The code for a dummy frustrum is supplied with the release in the file 
frustrum.c. This example gives a feel for how a Frustrum might be 
implemented, although the complexity of a Frustrum is dependent on its 
application. The example Frustrum has three purposes:

� To build and run the Parasolid installation acceptance test program.
� To let you build and run simple prototype applications without having first to 

write a complete Frustrum.
� To help you write you own frustrum.

Note: You are strongly advised to look at the Getting Started With Parasolid 
manual before looking at the information in this manual.

Note: This frustrum contains the bare minimum required to be used, in order for 
it to remain clear and platform independent. Normally a Frustrum is written with 
a particular application in mind, and may make use of system calls rather than 
the C run-time library for enhanced performance.
Downward Interfaces 7



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To further help you write your own frustrum, the Parasolid Example Application 
also contains source code for a frustrum implementation on Windows NT. See 
the Getting Started With Parasolid manual for more details.

1.2 Summary of functions
This table summarizes the frustrum functions which you must provide.

Function Description
FSTART Initialize the frustrum
these 
functions 
require the 
Frustrum to 
be 
initialized:

FMALLO Allocate a contiguous region of virtual 
memory

FMFREE Free a region of virtual memory (from 
FMALLO)

FFOPRD Open most guises of frustrum file for 
reading

FFOPWR Open most guises of frustrum file for 
writing

UCOPRD Open most guises of frustrum file for 
reading. The file has a Unicode 
filename.

UCOPWR Open most guises of frustrum file for 
writing. The file has a Unicode 
filename.

these 
functions 
require the 
file to be 
opened:

FFREAD Read from a file where permitted
FFWRIT Write to a file where permitted
FFCLOS Close a Frustrum file

FABORT Tidy up/longjump following aborted 
operation

FTMKEY Key name server required by TESTFR
FSTOP Close down the frustrum
8 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1 Initialization
The Frustrum is initialized by calling FSTART and is closed down by FSTOP.

The former is called by PK_SESSION_start and the latter by 
PK_SESSION_stop. Parasolid does not call any other Frustrum functions before 
the Frustrum has been initialized nor after it has been closed.

1.2.2 Memory management
Parasolid needs to be able to allocate and free virtual memory into which to put 
its model data. The Frustrum interface to this facility is provided by the FMALLO 
and FMFREE functions, and is similar to the C library functions malloc and 
free.

The amount of virtual memory that Parasolid requests depends on the 
complexity of the modeling operation. By default, the minimum is about 1/8 
Mbyte. You can set and enquire the current value of this minimum block of 
memory using the functions PK_MEMORY_set_block_size and 
PK_MEMORY_ask_block_size, respectively. For complex cases, or those which 
require a lot of data storage, Parasolid may request more.

1.3 Abort recovery
Following an interrupt, the application has the option of calling KABORT before 
allowing Parasolid to continue processing. This causes it to abort the operation 
which was in progress. The call to KABORT would be made by an interrupt 
handler provided by the application.

Note: If your application supports 16-bit Unicode filenames, then you must 
provide UCOPRD and UCOPWR functions in your frustrum in addition to 
FFOPRD and FFOPWR (which are still required for schemas and journals). If 
your application does not support Unicode filenames, then you must provide 
FFOPRD and FFOPWR functions. See Section 2.2, “Unicode filenames”, for 
more information.

Note: The calls made by Parasolid to the start and stop functions can be 
nested within each other (e.g. FSTART, FSTART, FMALLO, FMFREE, FSTOP, 
FSTOP). Only the outermost calls are significant; the innermost calls must be 
ignored.
FSTART and FSTOP are assumed never to fail.
Downward Interfaces 9



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following such an abort, Parasolid normally returns through the PK in the normal 
way, giving error PK_ERROR_aborted. Before returning, Parasolid makes a call 
to Frustrum function FABORT, which gives the application developer an 
opportunity to do any generic tidying up and/or to do a long-jump to some special 
recovery-point within his code.

For further information on abort recovery, see Chapter 58, “Error Handling”, of 
the Parasolid Functional Description manual.

1.4 Frustrum errors
If a Frustrum function detects an error, it returns an error code in its final 
argument (ifail), which otherwise is the code FR_no_errors. The error codes 
are divided into three categories – prediction, exception and illegal call.

1.4.1 Prediction errors
This category contains those errors which can be expected to occur during the 
ordinary course of a program run. Parasolid looks for this type of error return 
code explicitly and takes the appropriate action.
For example, the implementation must always check the key name arguments 
which are passed to FFOPRD and FFOPWR and the file size argument which is 
passed to FFOPRB, in case Parasolid is being run with argument validation 
having been switched off by PK_SESSION_set_check_arguments. These types 
of errors can be said to be predictable.

The range of prediction error codes which can be returned from a given function 
are documented as end of line comments to the ifail argument.

1.4.2 Exception errors
This category contains codes for unpredictable but plausible errors.

Where some particular remedial action is possible, Parasolid traps these cases 
explicitly. If no specific course of action is appropriate, Parasolid traps and 
handles such cases by a default action.
For example, some PK functions need to take special action in the event of 
running out of disk space whereas others handle such cases by a catch all error 
trap.

Exception codes are also added as end of line comments to the ifail argument 
in the documentation of each Frustrum function.
10 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.3 Illegal call errors
This category is used to report an erroneous call being made to a Frustrum 
function, such as trying to write to a file strid which has not been opened or to 
denote that an error has occurred in the Frustrum implementation.

The Frustrum should normally report illegal call errors by outputting a message 
describing what went wrong, before returning the generic code FR_unspecified.

This code should only be returned when an error has been detected; it should not 
be set in the normal course of events. For this reason, the ifail code 
FR_unspecified is not used in the documentation for the Frustrum functions.
If an error occurs which is not the result of an erroneous call being made to the 
Frustrum or of an internal error in the Frustrum code, the ifail should be set to one 
the mnemonic codes in the documentation which best describes the result.

Note that the code FR_unspecified is not trapped explicitly by Parasolid, so the 
resulting ifail code returned from the KI may be misleading.

1.5 Validation tests
The test function TESTFR is supplied with Parasolid to enable the customer to 
check that the behavior of his implementation of the Frustrum is consistent with 
the requirements of Parasolid and of file portability.

It is strongly recommended that TESTFR be linked and run every time the 
Frustrum is changed, and for every new version of Parasolid; Frustrum faults can 
cause obscure and serious problems in Parasolid.
Although the specification for TESTFR is included with the Frustrum 
documentation, TESTFR is not itself part of the Frustrum, and as such is not 
supplied by the customer, but is supplied with Parasolid.

However, the TESTFR function requires a key name server FTMKEY to be 
provided by the customer implementation, which returns sample names to be 
used as arguments in the test calls made to FFOPRD and FFOPWR. The key 
name server is not otherwise used by Parasolid.
Downward Interfaces 11



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5.1 TESTFR – invokes the verification tests for 
the frustrum

This function invokes a set of verification tests for customer implementations of 
the Frustrum. These are designed to confirm that the behavior of the Frustrum 
(with respect to file handling and memory management) is consistent with the 
requirements of Parasolid and of file portability.

The tests are not foolproof, and in particular, cannot detect cases where the 
Frustrum writes/reads files in a way not compatible with the C run time library. 
Nonetheless, the tests can detect many Frustrum faults which might otherwise 
cause obscure and catastrophic problems in Parasolid. It is therefore strongly 
recommended that a customer runs the tests after any modification to his 
Frustrum, and after receiving any new version of Parasolid.

void TESTFR
(

/* received arguments */
int *number, /* test number */
int *level, /* trace level */

/* returned arguments */
int *code /* completion code */
)

Argument Synopsis  Values Description
number test number 0 run all tests

n run test n (n>=1)
level trace level 0 no tracing

1 number, purpose, result
2 + receive/return args
3 + diagnostics
4 + debug trace

code completion code 0 setup_error
1 test_success
2 test_failure
3 test_omitted
4 test_exceeded
5 test_warning
12 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to run the tests, the customer must provide a simple driver program to 
call TESTFR, which he then links with TESTFR and with his Frustrum. Once a 
test image has been linked, the following test strategy is recommended:

� Delete any back copies of test files which have been produced by earlier 
runs. The names of these files have been determined by the sample key 
names which were returned by FTMKEY.
For example, if FTMKEY is called with guise = FFCJNL, format = FFTEXT 
and test index 20, it might return the string “TESTFR_20.jnl_txt”. It would be 
necessary to delete any test files which matched 
“TESTFR_<index>.<guise>_<format>” (where <index> = 1..20)

Note that the test files are not necessarily created in the same directory (e.g. 
a Frustrum implementation might choose to write its journal file to the user’s 
default directory but to write its schema files to a common system directory).

� Call TESTFR for test 0 at trace level 0. Note the completion code.
� If the completion code is zero (implying a setup error), check that all of the 

test files which are implied by FTMKEY have been deleted. Check that the 
test and trace arguments are being passed correctly to TESTFR (by 
address) and that the values are in range.

� If the completion code is one, all of the tests have succeeded.
� If the completion code is two (failure), delete any test files which have just 

been produced and call TESTFR for test 0 at trace level 1.
Note the test number which has failed as N.

Delete any test files which have just been produced and call TESTFR for test 
N at trace level 2 (or 3). This traces the function arguments which were used 
(with diagnostics).

Correct the Frustrum implementation, making use of the trace messages 
(and diagnostics), then return to the first step and start the process again.

� If the completion code is three, this implies that no tests in TESTFR are 
associated with the given test number; it should be incremented (this is to 
allow particular tests to be commented out later on).

� If the completion code is four, this implies that the given number exceeds the 
number of tests which have been defined for TESTFR. If running with the test 
number as zero, this message shows up at the end of the level one trace, all 
the tests have been tried.

� If the completion code is five, all of the tests have succeeded but a warning 
has been noted; delete any test files which have just been produced and call 
TESTFR for test 0 at trace level 3 (writing the trace output to a log file). 
Search the file for the word ‘Warning’. Check with the Parasolid Technical 
Support group if the reason for the warning is not apparent from the trace 
messages and Frustrum documentation.
Downward Interfaces 13



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The association between a particular check and a test number will not 
necessarily be maintained between releases of Parasolid and/or releases of the 
Frustrum interface specification.
14 Downward Interfaces



2File Handling

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Introduction
Parts modeled in Parasolid are saved to external storage using functions in your 
application’s Frustrum. Parasolid part files (transmit or XT files) are intended to 
fit into an archiving system within your application. This could take the form of a 
controlled directory structure on the host computer, or some kind of database.
Parasolid also requires facilities to save and retrieve large amounts of data in 
order to support such operations as saving and restoring snapshots and 
journalling.

Whilst such facilities could be implemented in a number of ways, they are 
described here in terms of an implementation based on the use of files provided 
by the host operating system.

2.1.1 Key names vs. file names
A distinction is made between the name of a key, which is passed by Parasolid 
as an argument to FFOPRD and FFOPWR (or UCOPRD and UCOPWR for 
Unicode keys) and the name of a file (which is used internally to identify the 
Frustrum files to the operating system).

The name of the key which is passed to the Frustrum by Parasolid is exactly the 
same as the name which has been given in the relevant PK call 
(PK_PART_transmit, PK_SESSION_transmit, PK_SESSION_start etc.), except 
in the case of schema files where the key has been generated by Parasolid.
The file name depends entirely on the particular implementation of the Frustrum, 
but typically this might include the key plus directory prefixes and file extensions 
as appropriate.

2.1.2 Filename extensions
The following filename extensions are recommended for the Frustrum to 
generate and use.

FAT UNIX/NTFS
part .X_T .xmt_txt
schema .S_T .sch_txt
Downward Interfaces 15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Frustrum should test whether a file resides on a DOS style FAT device or a 
long name NTFS type device before opening the file, and act accordingly. Files 
can simply be renamed when transferring between the different systems.

Note that the 3 character extensions are shown in the table in upper case for 
clarity, though the case is ignored.

2.1.3 File guises
Parasolid requires the Frustrum to support different types (or guises) of file, 
represented by six-character integer mnemonic codes.

The following guises are opened for reading by FFOPRD and UCOPRD. The file 
should already exist, and its contents can be read sequentially by FFREAD.
� FFCSNP snapshot file
� FFCJNL journal file (FFOPRD only)
� FFCXMT Parasolid part transmit files
� FFCSCH schema file (FFOPRD only)
� FFCLNC licence file
� FFCXMP partition transmit file
� FFCXMD deltas transmit file

The following guises are opened for writing by FFOPWR and UCOPWR. A new 
file is created, and it can be written to sequentially by FFWRIT:

� FFCSNP snapshot file
� FFCJNL journal file (FFOPWR only)
� FFCXMT Parasolid part transmit file
� FFCSCH schema file (FFOPWR only)
� FFCXMP partition transmit file
� FFCXMD deltas transmit file
� FFCDBG debug report file (FFOPWR only) 
When all of a new file has been written or sufficient of an existing file has been 
read, the file is closed with FFCLOS. In the case of new files, the call specifies 
whether or not the new file is to be retained.

journal .J_T .jnl_txt
snapshot .N_T .snp_txt
partition .P_T .xmp_txt
delta .D_T .xmd_txt
binary .*_B .***_bin
debug report *.xml *.xml

FAT UNIX/NTFS
16 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4 File header
There is a standard format for a Frustrum file header, which is described in 
Chapter 3, “File Header Structure”.

2.1.5 Number of files open concurrently
In normal operation, Parasolid only has a journal file open, which is open for 
writing.

For short periods, Parasolid may need to have up to two more files open. These 
are either a snapshot file or a transmit file, possibly with its associated schema 
file.

The Frustrum implementation must therefore allow for three files to be open at 
the same time for each Parasolid process.

2.2 Unicode filenames
Parasolid supports the use of 16-bit Unicode filenames in your application, as 
well as the native character set. This is achieved by using the following frustrum 
functions instead of FFOPRD and FFOPWR:

To use these functions, you must call PK_SESSION_set_unicode before 
registering the frustrum. Once called, you must then supply valid UCOPRD and 
UCOPWR functions instead of FFOPRD and FFOPWR functions when 
registering the frustrum. For more information about registering the frustrum, see 
Chapter 5, “Registering the Frustrum”.
To find out whether Unicode keys are enabled within a given session, call 
PK_SESSION_ask_unicode.

Function Description
UCOPRD Open various guises of part file for reading. The 

part file has a filename encoded in Unicode 
format.

UCOPWR Open various guises of part file for writing. The 
part file has a filename encoded in Unicode 
format.
Downward Interfaces 17



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 File formats
Parasolid regards a file as being simply a stream of bytes, which is written or read 
sequentially. It is assumed that the stream of bytes obtained when reading is 
identical to that which was written (except in the case of a file ported between 
systems, when the character set may change).

2.3.1 Text and binary
Parasolid distinguishes between binary files and text files:
� In a binary (FFBNRY) file, the stream of bytes has no inherent meaning or 

structure. It can contain bytes of any value.
� For a text (FFTEXT) file, the stream of bytes consists of printing characters 

(as defined by the C library function isprint) interspersed with newline 
characters (corresponding to \n in C) such that there are never more than 80 
consecutive printing characters.

When writing certain files via the Frustrum, the application needs to specify 
whether they are to be in text or binary format. A file must be written and read in 
the same format (thus is Frustrum dependent). When deciding which format to 
use, consider the following factors:

� Machine specific binary files can only be read back on the same type of 
machine as that on which they were written.

� Text files (subject to conversion of the contents of the file to the local 
character set of the target machine) and neutral binary files should be 
portable between machines.

� Binary, neutral or machine files are normally quicker both to generate and 
read back than text files, and take up less space. The format of files 
influences the amount of space required and so affects how space is 
allocated when the Frustrum is written.

� Whether binary transmit files or neutral transmit files are created is 
dependent on the option switch passed to PK_PART_transmit and 
PK_PARTITION_transmit.

� Text files that comply with Parasolid’s standard are machine independent 
and Frustrum independent (the header of the file is in human readable form 
and may be of interest, but the rest of the file is not intended to be human 
readable).

� Transmit files must be in text format if they are used to report faults to the 
Parasolid Technical Support group.

Note: We recommend that your Frustrum creates text files as stream, i.e. LF 
terminated, rather than using the DOS default (CR and LF terminated). 
Implementation details can be found in the Example Frustrum.
18 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Application I/O
There is also a transmit file format called application i/o, or applio. When this 
format is selected in PK_PART_transmit and PK_PARTITION_transmit, transmit 
files are written and read using a suite of functions provided by the application. 
Using these functions enables the application to do further processing of the 
output data before storing it.

The applio function interfaces are defined in Appendix E, “Application I/O 
Functions”.

2.3.3 Portability
It is clearly desirable that Parasolid files be portable between different machines 
and between different systems which use Parasolid (which have different 
Frustrum implementations). In practice, machine specific binary files cannot be 
ported from one type of machine to another, so the best that can be achieved is:

� All files shall be portable between different Frustrum implementations on the 
same machine type.

� Text and neutral binary files shall be portable between different Frustrum 
implementations on different machine types.

In order that files be portable between different Frustrum implementations, it is 
necessary to standardize the internal format of the file. For this reason, we 
recommend that all Frustrum implementations should generate files in the same 
format as is generated by the appropriate C runtime library functions on the 
appropriate machine. In the case of text files, this includes correct handling of 
newline (\n) characters.

To ensure portability of text files between different machine types, we require 
that:

� With the exception of newline characters, text files should only contain 
printing characters, as defined by the C library function isprint. All text 
data output from Parasolid conforms to this rule; however, the Frustrum must 
guarantee it for the Frustrum header data.

� Text files should not contain lines of more than 80 characters. To ensure this 
is the case, Parasolid automatically inserts newline characters (\n) into all 
text data being output. The Frustrum must ensure sufficient newline 
characters appear in the Frustrum header.

It is also necessary that, when a text file is ported to a different type of machine, 
it is converted to the local character set and C format for the the target machine.

If a Frustrum implementation does not follow the above recommendations it may 
prove impossible to read files which have been created by other systems or to 
forward its own files to other systems (such as when making a fault reporting). 
Problems of this sort may be revealed by running the Frustrum validation tests, 
Downward Interfaces 19



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

but note that these tests cannot verify that the file format is consistent with the C 
runtime library, so some additional check is required to confirm that this is the 
case.

2.4 Characteristics of different file guises

2.4.1 FFCSNP
Snapshot files are created by PK_SESSION_transmit. The data within the 
snapshot files is schema dependent and Parasolid needs to have access to the 
corresponding schema file in order to interpret it.

2.4.2 FFCJNL
Journal files are created as a result of calling PK_SESSION_start with journalling 
switched on. They are always created in text format. The files are used to record 
the values of arguments which have been passed to and received from PK and 
KI functions. 

Journal files are reasonably portable between machines, except where the 
arguments specify such machine dependent features as file names or database 
keys or where they refer to parts which were created in an earlier session.

2.4.3 FFCXMT
Transmit files containing parts, created by PK_PART_transmit. The data within 
the transmit files is schema dependent and Parasolid needs to have access to 
the corresponding schema file in order to interpret it.

2.4.4 FFCSCH
Schema files are created by Parasolid to have names of the form sch_n (where 
n represents an integer value).

The integer value is used internally by Parasolid to identify any changes which 
have been made to the Parasolid schema.
The schema describes the internal data structure which is used to represent part 
data within the Parasolid model, such as the ordering of geometric data and the 
relationships between edges and faces.

When a part is saved, Parasolid asks the Frustrum whether the schema file for 
the current version of the Parasolid modeler has been saved. If not, it asks the 
Frustrum to open a new schema file, writes out details of the schema and closes 
it.
20 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Frustrum should store schema files in a separate directory. The KID 
Frustrum stores them in a directory which is referenced by the P_SCHEMA 
environment variable.

Note that the Parasolid release includes a set of schema files for all previous 
versions of Parasolid and for the current version of the Parasolid modeler. This 
ensures upgrade compatibility of old part files.
Application writers should include a full set of schema files with their product 
release, including one for the current version of the Parasolid modeler.

In operating systems which have case specific file names the KID Frustrum 
chooses to write and read the schema archive file in lower case. Any old schema 
files that are supplied with a release have lower case file names.

2.4.5 FFCLNC
Licence files may be used in subsequent versions to check that Parasolid is 
being used in accordance with the licencing agreement. The validation tests for 
Frustrum implementations require this guise of file to be supported by FFOPRD 
& FFOPWR, so that the licence checking capability can be introduced in a later 
release of Parasolid, without the need to alter the Frustrum interface further.

It is intended that licence files are created in text format; consisting of a standard 
file header followed by one or more lines of licence checking data.

2.4.6 FFCXMP
Transmit files containing a partition, created by PK_PARTITION_transmit and 
read by PK_PARTITION_receive.

2.4.7 FFCXMD
Transmit files containing deltas, created by PK_PARTITION_transmit if the 
option to transmit deltas is selected. During the transmit, the partition's deltas are 
opened, read and output to the transmit file (using the delta handling functions 
registered with PK_DELTA_register_callbacks).
Delta files can only be received in the version they were transmitted in. They are 
read by PK_PARTITION_receive_deltas, if the option to receive deltas later was 
selected when the relevant partition was read in by PK_PARTITION_receive.

2.4.8 FFCDBG
Debug report files are created as a result of calling PK_DEBUG_report_start. 
They are always created in XML format. These files are used to record 
Downward Interfaces 21



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

information such as the values of arguments passed to and returned by Parasolid 
functions, as well as embedding relevant part files. 

2.5 Open modes
There are the basic modes in which files are used by Parasolid.

2.5.1 open_read
This mode is characteristic of receiving a Parasolid transmit file, receiving a 
snapshot file or reading an archived schema file.

A test is made first for whether there is any header data and whether the ‘skip 
header’ flag is set. If so, the header data is read and checked as deemed 
necessary by the implementation. If there is no header data or if the header data 
is to be left (for checking by the Frustrum validation tests), the file pointer is 
repositioned back to the start of the file.
The file is read sequentially until sufficient data has been read or until the end of 
file is reached. The file is then closed (and it is retained).

2.5.2 open_new
This mode is characteristic of recording a new journal or debug report file.

The file is opened for writing and the header data are written to it. Parasolid then 
writes sequentially to the file, journalling the arguments to each interface 
function. The new file is closed and is retained.

If the system crashes while the journal or debug report file is still open, the 
system is left with a (possibly incomplete) file. Even in its incomplete form, this 
file can be useful for debugging a session.

2.5.3 open_protected
This mode is used for creating new transmit, schema and snapshot files.
The difference between the open_protected and the open_new modes is that the 
Frustrum helps to prevent Parasolid from accessing incomplete or otherwise 
erroneous files. If an error is detected by Parasolid when writing to a new file, the 
call to FFCLOS is made with the status code FFABOR, meaning that the file must 
be deleted when the strid is closed down.

However, if new files are not closed explicitly (as could occur after a system 
crash), it is possible that a newly created file is not complete.
22 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Frustrum can protect Parasolid from incomplete files by creating new 
transmit, schema and snapshot files with scratch names, only giving them their 
correct identity after the files have been closed explicitly by a call to FFCLOS.

2.5.4 Summary of open modes
The three basic methods of using files are summarized in the following table:

An entry Y denotes that Parasolid calls the given function in the way which is 
described by the comment above the column. The file guises XMP and XMD 
(transmit files containing partition and delta data) use the same methods as XMT 
(part transmit) files.

2.6 Explanation of the special characters 
in a journal file
Journal files contain the following markup characters to assist with interpretation 
of the contents.

open_read open_new open_protected
open mode FFOPRD Y

FFOPWR Y Y
UCOPRD Y
UCOPWR Y

file guise FFCSCH Y Y
FFCXMT Y Y
FFCSNP Y Y
FFCJNL Y
FFCLNC Y
FFCDBG Y

operation FFREAD Y
FFWRIT Y Y

close mode FFCLOS with 
action normal

Y Y Y

FFCLOS with 
action abort

Y

Downward Interfaces 23



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Record and element symbols

Punctuation symbols

Symbol Description
: The first and last lines are comment records, which start with a ‘:’ 

character.
< The ‘<’ character at the beginning of each journal record is followed 

by the name of a PK function. This is followed by a sequence of 
lexical items, being tags, text strings, integers, doubles and 
punctuation symbols. These are separated by one or more spaces.
� when journal records are written over more than one line, the 

continuation lines start with a space
� nested PK calls are shown with one angle bracket for each 

nesting depth; if there is an error, and PK_SESSION_tidy is 
called, the level is reset back to 0

# A tag is represented by a ‘#’ character, followed by digits.
“ ” A string is enclosed in quotation marks (two successive quotation 

marks imply that the string itself contains a quotation mark).
(-)nnn Integer values are represented by an (optional) sign, followed by 

digits.
(-)nn.nnn
5.6e07
-5.6e-07

Double values are represented by an (optional) sign, followed by a 
floating point representation (with a decimal point) or an exponent 
and mantissa representation (with an ‘e’ character).

@ Function pointers are journalled as addresses.

Symbol Description
; the semi-colon separates received arguments from returned 

arguments
& the ampersand concatenates adjacent text strings (the journalling 

system sometimes needs to split a long text string when writing it to 
file)

[ ] square brackets enclose an array of some type (all elements of the 
array have the same type); if an array or pointer argument is supplied 
as NULL, this is journalled as the address value @0

( ) round brackets enclose a list of doubles (e.g. vectors)
{ } curly brackets enclose a list of structure members, e.g. a standard 

form
24 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Downward Interfaces 25



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 Downward Interfaces



3File Header Structure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Introduction
There is a standard format for a Frustrum file header, designed to give the 
following benefits:
� To allow a customer to add his own information to the file without rendering it 

incompatible with other Parasolid-based systems.
� To provide a standard method for recording in the file such information as 

when, where, by whom the file was created.

All files must begin with a file header. The header is written and read by the 
customer’s implementation of the Frustrum, not by Parasolid. The reason for 
standardizing the format of the header is to ensure compatibility between 
different Frustrum implementations; Parasolid itself never sees the header and 
therefore has no knowledge of its format.

It is vital that every Frustrum implementation produces file headers which 
conform to the standard. Therefore, the Frustrum validation tests include specific 
checks that this is the case.

3.2 Structure of file header
The file header consists of a preamble, three parts of keyword data and a trailer.

� The purpose of the preamble is to identify whether or not a Frustrum file has 
a header, and also serves to define the character set which is used for writing 
keyword data.

� The part 1 keyword definitions describe the file characteristics and the 
environment in which it was created (e.g. the guise and date of creation).

� The part 2 keyword definitions provide information about the version of 
Parasolid which was being used when the file was created.

� The part 3 keyword definitions provide a method by which the Frustrum 
developer can attach user specific data to the file.

� The file header is terminated by a trailer record. This provides a check as to 
whether the three parts of user data have been formatted correctly.
Downward Interfaces 27



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Format of the preamble
The preamble is written as two lines of 80 characters, each terminated by an end 
of line character. It includes all characters in the ASCII printing set.

The punctuation characters in the preamble are written in the same order as they 
appear in the ASCII sequence (excluding alphanumeric characters).

3.2.2 Format of part data
Each of the three parts of keyword data starts with the declaration “**PART1;”, 
“**PART2;” or “**PART3;”. (The quotation marks used here are for 
documentation purposes and do not appear in the file.)
Each part declaration is followed by a sequence of keyword definitions, each 
consisting of a keyword name and a keyword value.

The keyword definition sequence for each part is terminated by the start of the 
declaration for the next part or by the start of the trailer record.

Keyword definitions are written to file so that no output line is more than 80 
characters long. The new line characters which are required to achieve this 
layout have no effect on the meaning of the keyword names or values and can 
appear anywhere within a keyword definition as it is written to file.
A new line character is written at the end of each keyword definition sequence so 
that the next part declaration or trailer record starts on a new line.

Part 1 data
The part 1 data is standard information which should be accessible to the 
Frustrum (e.g. by operating system calls). It is the responsibility of the Frustrum 
to gather the relevant information and to format it as described in this 
specification. A list of keywords and their meanings is given in a later section.

Part 2 data
The part 2 data is again standard information, but this time is information not 
readily available to the Frustrum (e.g. the Parasolid schema version), and which 
therefore must be provided from Parasolid. When creating a new file, Parasolid 
passes a string containing the relevant keywords/values to FFOPWR or 
UCOPWR, as appropriate. The frustrum must then insert this string into the 
header in the appropriate place.

**ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**************************
**PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789**************************
28 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The string passed to FFOPWR or UCOPWR does NOT include newline 
characters or the “**PART2;” prefix; these must be added by the Frustrum. 
However, the Frustrum should not add escape characters to the string; these 
have been added by Parasolid, if required.

As an example, the string passed to FFOPWR for the following sample file 
header would be “SCH=SCH_700084_7007;USFLD_SIZE=0;”.

Part 3 data
The part 3 data is non-standard information, which is only comprehensible to the 
Frustrum which wrote it. However, other Frustrum implementations must be able 
to parse it (in order to reach the end of the header), and it should therefore 
conform to the same keyword/value syntax as for part 1 and part 2 data. 
However, the choice and interpretation of keywords for the part 3 data is entirely 
at the discretion of the Frustrum which is writing the header.

3.3 Example of simple file header

3.4 Syntax of keyword definitions
All keyword definitions which appear in the three parts of data are written in the 
form <name>=<value> e.g. MC=hppa;MC_MODEL=9000/710;

where
� <name> consists of 1 to 80 uppercase, digit, or underscore characters 
� <value> consists of 1 or more ASCII printing characters (except space)

**ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**************************
**PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789**************************
**PART1;MC=hppa;MC_MODEL=9000/710;MC_ID=sdlhpp36.2006892913;OS=HP-
UX;OS_RELEASE=A.09.05;FRU=sdl_parasolid_test_hppa;APPL=unknown;SITE=sdl-
cambridge-
u.k.;USER=ianb;FORMAT=text;GUISE=transmit;KEY=cube;FILE=cube.xmt_txt;DATE
=2-apr-1996; **PART2;SCH=SCH_70084_7007;USFLD_SIZE=0;
**PART3;
**END_OF_HEADER*****************************************************************
T50 : TRANSMIT FILE created by modeller version 70008415 SCH_700084_70070 
12 1 6 2 0 0 0 0 0 2 1e3 1e-8 0 3 0 2 1 4 5 6 7 8 9 10 102 4 2 cube13 4 3 
0 ... etc ...
Downward Interfaces 29



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Escape sequences
Escape sequences provide a way of being able to use the full (7 bit) set of ASCII 
printing characters and the new line character within keyword values.

� The header specification does not allow certain characters to be written to 
file directly; instead, they must be converted to escaped form as they are 
written to file.

The implementation must also be able to recognize and to convert escaped 
characters as they are read back from file.

New line
The requirement to format the output data into lines of 80 characters or less 
means that new line characters are ignored as keyword definitions are read back 
from file (although they are still significant when they are read as part of the 
preamble or the trailer record).
If new line characters need to be included within a keyword value, they must be 
written to file in escaped form as “^n” (up_arrow followed by lower case n).

Care is required when reading keyword values from file so that new lines which 
are part of the keyword value are not confused with file layout new lines.

Space
The specification does not allow spaces to be written to file as part of the keyword 
data. This is because of the danger of losing trailing spaces when porting text 
files between different systems.

If space characters need to be included within a keyword value, they must be 
written to file in escaped form as “^_” (up_arrow followed by underscore).

Semicolon
The specification uses the semicolon character to mark the end of a keyword 
value. If semicolon characters need to be included within a keyword value, they 
must be written to file in escaped form as “^;” (up_arrow followed by semicolon).
Care is required when reading these characters back from file so that the 
semicolons within a keyword value are not confused with the semicolons which 
terminate a keyword value.

Up arrow
The specification uses the up arrow character as its escape character when 
writing keyword values to file. When used in a keyword value, the up arrow 
30 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

character is doubled up when it is written to file so as to avoid ambiguity when 
reading back the data.

General points
The two character escape sequences may be split by a new line character as 
they are written to file. They must not cause any output lines to be longer than 80 
characters.

Only those characters which belong to the ASCII (7 bit) printing sequence, plus 
the new line character, can be included as part of a keyword value.
It is possible that the space, semicolon and up arrow characters are used within 
keyword values which follow the KEY and FILE keywords in part 1 data; the 
implementation must be able to decode these, even if it does not need to encode 
escaped characters when writing its own file headers.

The new line character does not appear as part of a file or key name (in normal 
operation) as this is rejected by the PK argument checking phase.

It is possible for any of the escaped sequences to be used within the keyword 
values which are associated with part 3 data.
Note that the preamble and the trailer record are written to file in literal mode, 
without using escape character sequences.

3.5 Pre-defined keywords
The following keyword names must be present in each file header, in the correct 
section of part data. The keyword name must be set to one of the associated 
values which is shown on the right hand side below (such as hppa) or must use 
the formatting conventions which are given (such as the date consisting of a one 
or two digit day number, a three letter abbreviation for the month in lower case 
and a four digit year number).

The pre-defined sets of keyword values are written in lower case rather than in 
upper case; this is significant.

The spacing and commas which are shown with the lists of pre-defined keywords 
are for documentation purposes only and must not be used in keyword values.
The sequence “...” is used to represent an arbitrary sequence of one or more 
characters (for example, the value for the keyword FILE can be cube.xmt_txt). 
However, all characters which are used in a keyword value must be converted to 
the escaped form where necessary.

If the Frustrum developer cannot determine which keyword value applies to a 
particular keyword, in certain cases this can be set as “unknown”. In all other 
Downward Interfaces 31



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cases, the value should be set to one of the pre-defined values or to use the 
specified format.

If the range of keyword values which is shown in the Frustrum documentation is 
not sufficient (e.g. Parasolid is ported to a new machine), a request should be 
made to the Parasolid Technical Support Group to have the list extended.

3.5.1 Part 1 data

3.5.2 Part 2 data

Keyword Description Notes
MC make of computer e.g. hppa can be set as “unknown”
MC_MODEL model of computer e.g. 9000/710 can be set as “unknown”
MC_ID unique machine identifier ... can be set as “unknown”
OS name of operating system e.g. 

HP-UX
OS_RELEASE version of operating system 

e.g.A.09.05
can be set as “unknown”

FRU Frustrum supplier and 
implementation name e.g. 
sdl_parasolid_customer_support

can be set as “unknown”

APPL application which is using Parasolid 
e.g. parasolid_acceptance_tests

can be set as “unknown”

SITE site at which application is running ... can be set as “unknown”
USER login name of user ... can be set as “unknown”
FORMAT format of file binary, text MUST BE SET
GUISE guise of file snapshot, transmit, 

schema, journal, licence
MUST BE SET

DATE dd-mmm-yyyy e.g. 2-apr-1996 can be set as “unknown”

Keyword Description Notes
SCH SCH_m_n name of schema key e.g. 

SCH_700084_7007
MUST BE SET

USFLD_SIZE length of user fields (0 – 16 integer words) m MUST BE SET
32 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3 Part 3 data
There are no restrictions on the choice of keyword names and values which can 
be used in the part 3 data, other than the general rules which have been stated 
earlier.
Downward Interfaces 33



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 Downward Interfaces



4Graphical Output

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Introduction
When a call is made to the PK rendering functions, the graphical data generated 
is output through a set of functions known as the GO (Graphical Output) 
Interface.
This chapter describes the GO interface which you must provide to receive 
graphical data from Parasolid. The GO Interface consists of a number of 
functions that must meet the specifications in Appendix B, “Graphical Output 
Functions”. There are dummy versions of these functions in the Frustrum library 
which is supplied with Parasolid, so that you can link your programs. They do not 
do anything, however, so if you want to use any rendering functions you must 
write your own GO functions, or no graphical data is forthcoming.

4.2 Graphical output functions
Line Data is produced by PK_GEOM_render_line, PK_TOPOL_render_line and 
PK_TOPOL_render_facet. It is output through the GO functions GOOPSG, 
GOSGMT and GOCLSG.

There are two values which GO functions should return in the ifail argument, both 
defined as tokens in the Parasolid failure codes include file. All GO functions 
should return one of:
� CONTIN, if the graphical operation is to continue
� ABORT, if there is an error gross enough that the rendering operation should 

end. In this case the rendering functions return with the error code 
PK_ERROR_abort_from_go.

4.3 Structure of line data output
Data output through the GO is organized into segments, which correspond to 
identifiable portions of the model (not necessarily entities in the Kernel sense). 
Downward Interfaces 35



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Segment hierarchy
There are two classes of segment:

� Hierarchical segments are opened by a call to GOOPSG and remain open 
until explicitly closed by GOCLSG. Other hierarchical or single-level 
segments may be produced in between, and these can be regarded as 
contained in the hierarchical segment. They may contain any number of 
other segments.

� Single-level segments are opened and closed by a single call to GOSGMT. 
They do not contain any other segments. The kernel never creates single-
level segments on their own, they are always included in a hierarchical 
segment.

Every segment has a type, which governs (among other things) whether it is a 
hierarchical segment or not. 
Single level segments always contain the data for a line to be drawn, as well as 
information about what kind of line it is. 

Hierarchical segments usually contain other segments. Note that graphical data 
is always output hierarchically: using the hierarch option in 
PK_TOPOL_render_line affects the level of hierarchy.

� When faceting, both the body segment SGTPBY and the face segment 
SGTPFA are hierarchical, therefore there can be three levels of segment at 
one time: a body; a face; and another segment. 

� When creating hidden line graphical data the body segment SGTPBY is 
hierarchical. If the hierarch option is used then edge segment SGTPED; 
silhouette segment SGTPSI; and hatch-lines SGTPPH (planar) SGTPRH 
(radial) SGTPPL (parametric) are hierarchical.

� For all other options the only type of segment which is hierarchical is the 
body segment SGTPBY. Therefore as bodies cannot be contained in bodies, 
there can be at most two levels of segment at one time: a body and another 
segment.

For example, after a request by the application for view-dependent topology 
information by a call to PK_TOPOL_render_line, a hierarchical segment is 
opened for each body. Data for each silhouette line is then given in a single-level 
segment, and each is contained wholly within the hierarchical segment of the 
corresponding body.

A single body segment is not guaranteed to contain data for the whole body – for 
example, sometimes the kernel can output part of a body, close the body 
segment, open and close another body segment, and then open a new segment 
for the first body, and output the rest of it.
36 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Graphical data for assemblies
Assemblies constructed with KI routines must be flattened and their constituent 
body tags and transformation matrices copied into entity arrays before they can 
be rendered by the PK functions. For further information see Chapter 1, 
“Parasolid KI Programming Concepts”, of the Parasolid KI Programming 
Reference Manual.

All such body segments have a unique occurrence number when they are 
rendered – this number is the index of the body (in the entity array) plus 1.

The tags associated with each of these body segments are likely to be different. 
There are two circumstances when you could receive separate body segments 
with the same tag:
� a body is instanced more than once in the entity array, and each instance is 

output in a separate segment (or segments). The occurrence number is 
different in each case.

� a single body is being output piecemeal, e.g. if the body has been split into 
two sections in a hidden line drawing because part of it is obscured by 
another body, as for the block shown in Figure 4–1:

Figure 4–1 Hidden line drawing of a single body
In this case, the lines comprising each visible portion of the body might be 
output in separate body segments.

4.3.3 Notes
You should note that geometrical data output through the segment output 
functions is:
� in three dimensions; it is up to you to project it into two dimensions if required
� relative to model space (i.e. the same coordinate system as would be 

returned by the PK geometry enquiry functions)
Downward Interfaces 37



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The application must transform all of the received GO data by a viewing matrix 
before projecting the data into two dimensions:

� if the GO data includes view-dependent or hidden-line data, this matrix must 
be the same as the one referenced by the view_transf argument when 
calling PK_TOPOL_render_line

� if the GO data includes no view-dependent or hidden-line data, the viewing 
matrix can be defined wholly by the application

If the viewing matrix specifies a parallel orthographic projection, the 3D GO data 
can be projected into 2D form simply by replacing the third column of the matrix 
by a zero vector:

� i.e. using the same notation as used in Chapter 48, “Parasolid View 
Matrices”, of the Parasolid Functional Description, the combined matrix is 
formed by setting Dx Dy Dz Tz to zero.

4.4 Segment output functions
See Appendix B, “Graphical Output Functions”, for detailed descriptions of each 
function. The three functions (GOOPSG, GOSGMT, GOCLSG) all have the same 
arguments, but interpret them in different ways. The arguments are:
GO....( segtyp, ntags, tags, ngeom, geom, nlntp, lntp, ifail )
The first argument of each function is an integer segtyp. Parasolid always sets 
this to the token representing the segment type. These tokens are listed in 
Appendix H, “Go Tokens and Error Codes”, of this manual. The different types of 
segment are discussed in a later section.

The values of some of the arguments to the segment functions, and therefore 
how you should interpret them, vary depending on the segment type. The 
arguments to which this applies are noted as such, below. The remaining 
arguments are pairs of integers and arrays.

4.4.1 Tags
The integer ntags gives the length of the tags array. The contents of this array 
depend on the segment type. For example, for a hierarchical body segment, 
tags contains the tag of the body; for a single level edge segment, tags 
contains the tag of the edge.

4.4.2 Line type
The integer nlntp gives the length of the lntp array. This is an array of 
integers, the first of which is always the occurrence number of the segment, 
and the rest of which are tokens. For hierarchical segments (i.e. in calls to 
38 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GOOPSG and GOCLSG) the lntp array contains only the occurrence number 
of the segment.

Occurrence numbers link the segment to the entity which was passed to the 
rendering function. You can use them to associate the segments with the 
Parasolid entities (perhaps using identifiers to identify them). You can then 
identify what a particular line represents, and the entity it belongs to.

See also Section 51.3.2, “Occurrence numbers” in the Parasolid Functional 
Description.

Silhouettes are produced by the silhouette option in 
PK_TOPOL_render_line. These automatically have each silhouette on a face 
labelled with a different integer, i.e. 1, 2, 3, etc.
The remaining array entries, which are given as well as the occurrence number 
for all single-level segment types, are as follows.

Note: You should use identifiers rather than tags to identify entities.
Identifiers are saved with the part when you archive it and are therefore always 
the same, whereas the tags of a part and its entities can be different in every 
Parasolid session.
Downward Interfaces 39



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Line Type Line type specifies the type of geometry of the curve which the segment 

represents. This is one of:

� Straight line
� Complete circle
� Partial circle
� Complete ellipse
� Partial ellipse
� Poly-line
� Facet vertices
� Facet strip vertices
� Facet vertices + surface normals
� Facet strip vertices + surface normals
� Facet vertices + parameters
� Facet strip vertices + parameters
� Facet vertices + normals + parameters
� Facet strip vertices + normals + parameters
� Non-rational B-curves (Bezier form)
� Rational B-curves (Bezier form)
� Non-rational B-curves (NURBs form)
� Rational B-curves (NURBs form)
� Facet vertices + normals + parameters + 1st derivatives
� Facet strip vertices + normals + parameters + 1st derivatives
� Facet vertices + normals + parameters + all derivatives
� Facet strip vertices + normals + parameters + all derivatives
The different types of line are discussed in detail under Section 4.4.3, 
“Geometry”, below. They are defined by tokens of the form “L3TP...”

Completeness Completeness indicates whether the segment is complete or not, or of unknown 
completeness. An incomplete segment is part of a larger item which might in 
other circumstances have been output as a single segment. Completeness 
codes are only calculated in a hidden line drawing, so segments output from a 
view independent or view dependent wire frame drawing has code CODUNC 
(unknown completeness).

This takes values CODCOM, CODINC or CODUNC.
Visibility Visibility specifies that the line is visible, invisible or of unknown visibility. This 

value is only relevant to hidden line pictures, so all segments produced in view 
independent or view dependent wireframe drawings have unknown visibility 
(CODUNV). 
40 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In hidden line drawing:

� Visible segments have visibility code CODVIS.
� Invisible segments have visibility code CODINV. Invisible segments are 

output only if selected specifically by the visibility field of the 
PK_TOPOL_render_line option structure.

� Drafting segments have visibility code CODDRV.
� Invisible segments which are obscured only by their own body occurrence 

have visibility code CODISH (see Note below). This type of invisible segment 
is output only if selected specifically by the ‘extended visibility’ and ‘self-
hidden’ fields of the PK_TOPOL_render_line option structure.

The effects of the PK_render_vis_... options are as follows:

Smoothness Smoothness indicates whether a line is smooth (i.e. the normals of the faces 
either side of the edge vary smoothly across it). All silhouette lines and blend 
boundaries are smooth by definition. This code is provided because sometimes 
you may wish to leave smooth edges out of your pictures, to make them look 
more realistic.
For further information see Section 52.2.6, “Smoothness” in the Parasolid 
Functional Description.

CODSMS is a special code which can be returned only from a hidden line 
drawing. It indicates that an edge is smooth, but that it is also coincident with a 
silhouette line which is not output. In this case you need to draw the edge even 
though it is smooth, because otherwise the silhouette is missing, making the 
picture look wrong.

Option Description
vis_no_c no visibility evaluated (topology is output as a view-

dependent wire frame drawing)
vis_hid_c only truly visible lines are output, all tagged CODVIS
vis_inv_c all lines are output:

� the truly visible ones tagged CODVIS;
� the remainder tagged CODINV

vis_inv_draft_c all lines are output:

� the truly visible ones tagged CODVIS
� those obscured by others tagged CODINV
� the remainder being lines obscured by the body tagged 

CODDRV
vis_extended_c lines are output subject to the ‘invisible’, ‘drafting’ and ‘self-

hidden’ fields of the PK_TOPOL_render_line option 
structure
Downward Interfaces 41



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regional Data In addition, if regional data was requested from a hidden line drawing, edge and 

silhouette segments are output with start and end point indices. These are 
output only when the regional data option is specified, and allow the line segment 
to be linked correctly with other lines. See Section 4.5, “Interpreting regional 
data”, for more information.

4.4.3 Geometry
For hierarchical body segments the geom array always contains the model space 
box of the body, and ngeom is 6. See Section 4.4.4, “Segment types” for more 
details.

For a single level segment the geom array is an array of real numbers specifying 
the geometry of the line it represents. The length and contents of this array 
depend on the line type, as specified by the second entry of lntp (see Section 
4.4.2, “Line type”). The length of the array is ngeom unless otherwise stated. This 
concept of a line does not correspond exactly to any type of entity at the PK 
Interface: it is either a set of data describing an analytic curve with a start-point 
and an end-point, or a poly-line. 
The types of line which can be returned are:

Straight line: L3TPSL

The explicit direction is generally more accurate than that obtained from the start 
and end points. 

Complete
circle

L3TPCC

ngeom = 9
geom[0...2] start point
geom[3...5] end point
geom[6...8] direction

ngeom = 7
geom[0...2] center point
geom[3...5] axis direction
geom[6] radius
42 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Partial circle L3TPCI 

Complete
ellipse

L3TPCE 

Partial ellipse L3TPEL 

Poly-line L3TPPY 

ngeom = 13
geom[0...2] center point
geom[3...5] axis direction
geom[6] radius
geom[7...9] start point
geom[10...12] end point

ngeom = 11
geom[0...2] center point
geom[3...5] major axis direction
geom[6...8] minor axis direction
geom[9] major radius
geom[10] minor radius

ngeom = 17
geom[0...2] center point
geom[3...5] major axis direction
geom[6...8] minor axis direction
geom[9] major radius
geom[10] minor radius
geom[11...13] start point
geom[14...16] end point

ngeom = the number of 3D vectors
geom[0...2] start point
geom[3...5] second point
geom[i...i+2] nth point, where i = 3(n-1)
Downward Interfaces 43



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the double type array holding a poly-line is of length 3*ngeom.

The poly-line is a chordal approximation to a line which can not be held explicitly 
within the Kernel. It defines a series of points, each of which lies on the 
corresponding Parasolid curve. If you join the points of a poly line with straight 
line segments, this produces an approximation to the curve which is adequate for 
most viewing purposes. Splining the points produces a more accurate 
approximation if one is required.

For facet
vertices

L3TPFV and facet strip vertices – L3TPTS

For facet
vertices plus

surface
normals

L3TPFN; and facet strip vertices plus surface normals – L3TPTN

For facet
vertices plus

parameters

L3TPFP; and facet strip vertices plus parameters – L3TPTP

ngeom = the number of facet vertices
geom[0...2] first facet vertex
geom[3...5] second facet vertex
geom[i...i+2] last facet vertex, where i = 3(ngeom-1)

ngeom = 2 times the number of facet vertices
geom[0...2] first facet vertex
geom[3...5] second facet vertex
geom[i...i+2] last facet vertex, where i = 3((ngeom/2)-1)
geom[i+3...i+5] first facet vertex normal
geom[i+6...i+8] second facet vertex normal
geom[k...k+2] last facet vertex normal, where k = 3(ngeom-1)

ngeom = 2 times the number of facet vertices
geom[0...2] first facet vertex
geom[i...i+2] last facet vertex, where i = 3 (ngeom/2-1)
geom[i+3...i+5] first facet vertex (u,v,t) information
geom[k...k+2] last facet vertex (u,v,t), where k = 3(ngeom-1)
44 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For facet

vertices plus
normals plus

parameters

L3TPFI; and facet strip vertices plus normal plus parameters – L3TPTI

Non-rational B-
curves

L3TPPC

Rational B-
curves

L3TPRC

Non-rational B-
curves in

NURBs form

L3TPNC

ngeom = 3 times the number of facet vertices
geom[0...2] first facet vertex
geom[i...i+2] last facet vertex, where i = ngeom-3
geom[i+3...i+5] first facet vertex normal
geom[k...k+2] last facet vertex normal, where k = 2(ngeom-3)
geom[k+3...k+5] first facet vertex (u,v,t) information
geom[l...l+2] last facet vertex (u,v,t), where l = 3(ngeom-1)

ngeom = the number of Bezier vertices defining the curve
geom[0...2] first Bezier vertex
geom[3...5] second Bezier vertex
geom[i...i+2] last Bezier vertex, where i = 3(ngeom-1)

ngeom = the number of points
geom[0...2] first Bezier vertex
geom[3] first weight
geom[4...6] second Bezier vertex
geom[7] second weight
geom[i...i+2] last Bezier vertex, where i = 4(ngeom-1)
geom[i+3] last weight, where i = 4(ngeom-1)

ngeom = 3 (number of b-spline vertices) + number of knots
geom[0...2] first b-spline vertex
geom[3...5] second b-spline vertex
geom[i...i+2] last b-spline vertex, where i = 3(nvertices-1)
geom[3(nvertices)] first knot, (3(nvertices) = i+3)
Downward Interfaces 45



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The number of b-spline vertices is supplied in the 9th element of the integer array 
and the number of knots is supplied in the 10th element of the integer array.

Rational B-
curves in

NURBs form

L3TPRN

The number of b-spline vertices is supplied in the 9th element of the integer array 
and the number of knots is supplied in the 10th element of the integer array.

For facet
vertices +
normals +

parameters +
1st derivatives

L3TPF1; and facet strip vertices + normals + parameters + 1st derivatives – 
L3TPT1

geom[3(nvertices)+1] second knot
geom[3(nvertices)+nknots -1] last knot

ngeom = 3 (number of b-spline vertices) + number of knots

ngeom = 4 (nvertices) + nknots
geom[0...2] first b-spline vertex
geom[3] first weight
geom[4...6] second b-spline vertex
geom[7] second weight
geom[i...i+2] last b-spline vertex, where i = 4(nvertices-1)
geom[i+3] last weight,
geom[4(nvertices)] first knot, (4(nvertices) = i+4)
geom[4(nvertices)+1] second knot
geom[4(nvertices)+nknots-1] last knot

ngeom = 5 times the number of facet vertices
geom[0...2] first facet vertex
geom[i...i+2] last facet vertex, where i = ngeom-3
geom[i+3...i+5] first facet vertex normal
geom[k...k+2] last facet vertex normal, where k = 3(2ngeom/5-1)
geom[k+3...k+5] first facet vertex (u, v, t) information
geom[l...l+2] last facet vertex (u, v, t), where l = 3(3ngeom/5-1)
geom[l+3...l+5] first dP/du derivative
geom[m...m+2] last dP/du derivative where m = 3(4ngeom/5-1)
geom[m+3...m+5] first dP/dv derivative
geom[n...n+2] last dP/dv derivative where n = 3(ngeom-3)
46 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For facet

vertices +
normals +

parameters +
all derivatives

L3TPF2; and facet strip vertices + normals + parameters + all derivatives – 
L3TPT2

4.4.4 Segment types
As stated earlier, the first argument of each segment output function is the 
segment type. A segment of a particular type is always of the same class:
� body segments are always hierarchical (they cannot be output by 

GOSGMT, only by GOOPSG and GOCLSG)
� edge segments, silhouette segments, hatch-line segments are hierarchical 

when the hierarch option is used (like bodies, they cannot be output by 
GOSGMT, only by GOOPSG and GOCLSG)

� when the hierarch option isn’t used they are all single-level (and therefore 
are only output by GOSGMT)

The segment types with their dependent data are as follows.

Body: SGTPBY This type of hierarchical segment corresponds to an occurrence of a body in the 
model. If an entity within a body is passed to a rendering function, Parasolid still 
opens the body segment with GOOPSG before outputting the requested entity, 

ngeom = 8 times the number of facet vertices
geom[0...2] first facet vertex
geom[i...i+2] last facet vertex, where i = 3(ngeom/8-1)
geom[i+3...i+5] first facet vertex normal
geom[k...k+2] last facet vertex normal, where k = 3(2ngeom/8-1)
geom[k+3...k+5] first facet vertex (u, v, t) information
geom[l...l+2] last facet vertex (u, v, t), where l = 3(3ngeom/8-1)
geom[l+3...l+5] first dP/du derivative
geom[m...m+2] last dP/du derivative, where m = 3(ngeom/2-1)
geom[m+3...m+5] first dP/dv derivative
geom[n...n+2] last dP/dv derivative, where n = 3(5ngeom/8-1)
geom[n+3...n+5] first d2P/du2 derivative
geom[p...p+2] last d2P/du2 derivative, where p = 3(6ngeom/8-1)
geom[p+3...p+5] first d2P/dudv derivative
geom[q...q+2] last d2P/dudv derivative, where q = 3(7ngeom/8-1)
geom[q+3...q+5] first d2P/dv2 derivative
geom[r...r+2] last d2P/dv2 derivative, where r = 3(ngeom/8-1)
Downward Interfaces 47



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and closes the body segment afterwards. This lets you build a graphical data 
structure and subsequently update it.

� tags holds the tag of the body
� ngeom is 6 and geom holds the model space box of the body, in the order: 

xmin, ymin, zmin, xmax, ymax, zmax. 
There is no geometric data apart from the body box, as all the lines which make 
up the body in the picture form separate segments within the body segment.

Face: SGTPFA This type of hierarchical segment corresponds to an occurrence of a face in a 
model. GOOPSG allows you to build a graphical data structure in the same way 
as for bodies as explained above.

� tags holds the tag of the face
� ngeom is 6 and geom holds the model space box of the face, defined in the 

same way as the body box, as described above.
This segment type is only produced by faceting.

The following are all single-level segment types which may be output by 
GOSGMT:

Edge: SGTPED These represent edges or portions of edges. They are produced by 
PK_TOPOL_render_line if you specified the edge option. An edge segment may 
be a complete edge (E) of the model or may be only part of an edge, for example:
� If rendering view independent topology with unfixed blends, where an 

adjacent edge has a blend attribute, and an effect of the blend is to shorten 
the edge (E): only the part unaffected by the blend is drawn. If you are 
drawing the part a few edges at a time, the edge (E) is shortened only if you 
rendered it in the same call to PK_TOPOL_render_line as the edge which is 
blended.

� In hidden line drawings when the edge is partly visible and partly not, visible 
portions of (E) are output in separate calls to GOSGMT. If the invisible or 
drafting options are used, the invisible portions of (E) are also output by 
further calls to GOSGMT.

� In hidden line drawings with the regional data option: if the edge bounds a 
face being rendered with regional data, or divides such a face into visible and 
invisible parts, the places where the representation of (E) should meet other 
lines on the 2-dimensional drawing divide (E) up into separate parts which 
are output by separate calls to GOSGMT (see Section 4.5).
� If regional data is not required tags contains the tag of the edge in the 

model.
� If regional data is required tags contains the tag of the edge in the 

model and two extra tags, identifying the faces either side of the line in 
the 2-dimensional drawing. Either or both of these face-tags may be 
PK_ENTITY_null.
48 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If regional data is required lntp contains two extra integer values: the indices of 
the start and end points of the line (see Section 4.5).

Silhouette line:
SGTPSI

A silhouette is a line on a single face curving away from the eye where its surface 
changes from visible to hidden. Both view dependent topology and hidden line 
drawings produce silhouettes. They may be output whole, or cut or shortened in 
the same way as for edges, see above.
� If regional data is not required tags contains the tag of face bearing the 

silhouette.
� If regional data is required tags contains two extra tags, and lntp contains 

point indices, as for edges.

See Section 4.5, “Interpreting regional data”, for information on regional data.

Planar hatch-
line: SGTPPH

� tags contains the tag of the face bearing the hatch-line.

Radial hatch-
line: SGTPRH

� tags contains the tag of the face bearing the hatch-line.

Rib line on
unfixed blend:

SGTPRU

This is a further way of rendering an unfixed blend: adding lines across the blend 
surface, roughly perpendicular to the original edge. Rib lines can be drawn as 
well as a blend boundary, but not instead of it. As for blend boundaries, rib lines 
can only be produced by a view independent drawing.

� tags contains the tag of the edge.
Blend-

boundary line
on unfixed

blend:
SGTPBB

If an edge with an unfixed blend is being rendered as view independent topology 
with unfixed blends, the blend is rendered instead of the edge. The way in which 
the blend is rendered depends on the option data provided with the unfixed blend 
option, or if this is absent, on the attribute data associated with the blend. Unfixed 
blends are ignored by all the other rendering functions.

See the “Unfixed blends” section of Chapter 52, “Rendering Option Settings”, in 
the Parasolid Functional Description manual for further information on rendering 
unfixed blends.

A blend boundary is the line where the blending surface meets the faces or other 
blends adjacent to the edge.
� tags contains the tag of the blended edge.

Parametric
Hatch line:

SGTPPL

tags contains the tag of the face.

Facet: SGTPFT A facet is a planar or near planar polygon. A face rendered by the facet rendering 
function is approximated by a collection of contiguous facets. The data supplied 
is dependent on the setting of the rendering options to the faceting function.
Downward Interfaces 49



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

See Chapter 53, “Facet Mesh Generation” and Chapter 54, “Faceting Output Via 
GO” in the Parasolid Functional Description manual for further information on 
faceting.

� If edge tag data is not required, tags contains the tag of the face on which 
the facet lies.

� If edge tag data is required, tags contains the tag of the face on which the 
facet lies and also contains tags of the model edges from which each facet 
edge is derived. The number of edge tags equals the number of vertices 
which define the facet. The null tag is supplied if the facet edge is not derived 
from a model edge. The first edge tag (tag[1]) is the tag of the model edge 
from which the first facet edge is derived. The first facet edge ends at the first 
vertex given in the geom array, see below. The second edge tag is for the 
facet edge which ends at the second vertex in geom, and so on.

� Extra data is supplied in lntp for this segment type:
� lntp[2] contains the number of loops in the facet
� lntp[3] contains the number of vertices in the first loop
� lntp[4] contains the number of vertices in the second loop
and so on.

� ngeom and geom depend on the geometry type of this segment as specified 
in the second element of lntp.

If a facet has multiple loops, the outer loop is output first and the inner loops 
follow. The vertices of the outer loop are ordered counter-clockwise when viewed 
down the surface normal. The vertices of inner loops are ordered clockwise. 
Facets are manifold. That is, no vertex coincides with any other in the same 
facet, nor does it lie in any edge in the same facet.
This type of facet is only produced by the facet drawing function.

Error
Segment:
SGTPER

When rendering a list of entities, Parasolid may encounter a body, face or edge 
which it is unable to render (e.g. a rubber face). In such a case, Parasolid outputs 
an error segment giving the tag of the bad entity a code indicating why it was not 
rendered. When the error segment has been output, Parasolid continues to 
render the remaining entities.

� tags holds the tag of the entity which could not be rendered.
� ngeom is zero

Geometric
Segments:

SGTPGC,
SGTPGS,
SGTPGB

Geometric segment types SGTPGC (curves), SGTPGS (surfaces), and SGTPGB 
(surface boundaries) are used to sketch unchecked parametric curves and 
surfaces as view independent drawings enabling the relevant curve/surface to be 
visualized. 

Mangled
Facet:

SGTPMF

If during a call to the facet drawing function, user tolerances can't be matched, or 
facets are created which self intersect or are severely creased, then geometric 
50 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

data is output as a segment type SGTPMF. In this case, the facets are always 
triangular.

Visibility
Segment:

SGTPVT

If PK_TOPOL_render_line is used to output data hierarchically from a hidden line 
drawing (that is, if the hierarch option is anything but 
PK_render_hierarch_no_c), then the single level segments output for each edge, 
silhouette, or hatch-line are:
� a geometry segment (when hierarch is PK_render_hierarch_yes_c or 

PK_render_hierarch_param_c)
� a visibility segment

If regional data has been requested, tags holds the regional information for the 
segments between the visibility transition points. This means that ntags is twice 
the value of nlntp, since nlntp represents the number of visibility code pairs 
(see below).

� tags[0] is the tag of the face to the left of the segment after the first 
transition point

� tags[1] is the tag of the face to the right of the segment after the first 
transition point 

� tags[2] is the tag of the face to the left of the segment after the second 
transition point 

� tags[2n-2] is the tag of the face to the left of the segment after the nth 
transition point 

� tags[2n-1] is the tag of the face to the right of the segment after the nth 
transition point 

If regional data is not requested, then ntags is zero and tags contains no 
regional information.

geom holds the visibility transition points, i.e. the vectors in model space where 
the edge changes visibility or smoothness. ngeom holds the number of these 
visibility transition points.

nlntp holds the number of visibility code pairs. There are two codes output for 
every visibility transition point:
� The first describes the visibility of the segment after the transition point
� The second describes the smoothness

This smoothness property can change along edges which are partially coincident 
with silhouettes. The smoothness code contained in the geometry segment 
should be ignored.
Downward Interfaces 51



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The lntp array is structured as shown in Figure 4–2:

� lntp[0] to lntp[nlntp-1] hold the visibility codes for the edge
� lntp[nlntp] to lntp[2 * nlntp - 1] hold the smoothness codes for 

the edge
� lntp[2 * nlntp] to lntp[2 * nlntp + ngeom - 1] hold the point 

indices for the visibility transition points if regional data has been requested 

Figure 4–2 Structure of the lntp array
See Section 4.5, “Interpreting regional data”, for information on regional data.

Facet Strip:
SGTPTS

Using the ‘facet strip’ option when outputting data from the facet drawing function 
results in this data being output in the form of a ‘strip’ or ‘ribbon’ consisting of 
triangular facets. 

The number of facets in each strip must be specified in the option data list when 
using this option.
Triangular facets share vertices between adjacent facets with the geometry 
specifying the vertices of the triangles in a particular order. For example, in a strip 
consisting of eight triangular facets the order of the vertices are specified as 
follows:

Index of the 1st 
transition point

Index of the 2nd 
transition point

Index of the nth 
transition point

Visibility code 
after the 1st 
transition point

0 1 n-1

Visibility code 
after the 2nd 
transition point

Visibility code 
after the nth 
transition point

Smoothness 
code after the 
1st transition 
point

Smoothness 
code after the 
2nd transition 
point

Smoothness 
code after the 
nth transition 
point

nlntp
nlntp+1

nlntp+n-1

2*nlntp

2*nlntp+1

2*nlntp+n-1

smoothness codes point indices

point indices

smoothness codes

visibility codes

visibility codes
52 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 4–3 The ordering of vertices in a facet strip
As can be seen from the above example, triangular strip geometry only stores ‘n 
+ 2’ vertices, whereas an individual-triangle’s geometry stores ‘3n’ vertices.

Parametrized
Visibility

Segment:
SGTPVP

If the hierarch option is used to output data hierarchically from a hidden line 
drawing then the single level segments output for each edge, silhouette, or hatch 
line is very similar to those output when the other hierarchical options are 
specified, i.e.

� a geometry segment
� a visibility segment

However, when the geometry segment is a polyline, the visibility segment 
supplied is of type SGTPVP rather than SGTPVT:

� ntags and tags are zero, as this information is provided by the hierarchical 
segment.

� ngeom holds the number of visibility transition points.
� geom holds the visibility transition points. These points are sets of four 

values, defining both the vector position of the change in visibility and its 
parameter along the polyline, i.e.
� geom[0...2] vector position of first change in visibility
� geom[3] parameter of first change in visibility
� geom[i...i+2] nth vector position, where i = 4(n-1)
� geom[i+3] nth parameter

� nlntp holds the number of visibility codes.
� lntp holds the visibility codes for the edge.

The parameterization of polylines is pseudo arc-length, normalized so that the 
parameter interval of any polyline is always [0,1]. That is, the parameter of any 
point on the polyline is equal to the distance between the point and the start 
measured along the polyline, divided by the total length of the polyline.
The parameters are supplied in order to help the application locate the chord in 
the polyline on which the associated visibility transition point lies.

Given a polyline P with N chords, defined by the set of 3-D points:

 ( where 0  )
we define the total length of a polyline consisting of N chords as:

v1 v3 v5 v7 v9

v10v8v6v4v2

pi 0 i N� �
Downward Interfaces 53



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
and define distance D(t) as the length of the polyline at parameter value t 
measured from the point .
Given a visibility transition point v with parameter value  we can 
find the chord  on which the point v lies by finding a point index n 
such that

The position v is given by:

4.5 Interpreting regional data
Regional data is produced by in a hidden line drawing when you pass it the 
region option. It tells you how to split a hidden line picture into separate 2D 
regions, as shown in the diagram. 

Figure 4–4 Interpreting regional data

A single edge may bound several regions on the two-dimensional picture (for 
instance the edge E, in the diagram, bounds regions a, c, e, g, and i.). When this 
happens it is divided at the intersections, and output as several segments, with 
the same basic segment data (and completeness code CODINC), but different 
regional data. The additional data is of two types: adjacent faces, and point 
indices.

L N( ) pi 1+ pi–
0 i N<£
�=

p0
t 0 t 1� �( )

pn pn 1+�

L n( ) D t( ) L n 1+( )��

pn pn 1+ pn–� � D t( ) L n( )–
L n 1+( ) L n( )–
------------------------------------� �
� 	+

The letters denote separate regions.

a b
c d

e f
g h

i

j

edge E
54 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Adjacent faces
When an edge or silhouette is output with regional data, the tags array is of 
length 3 (i.e. ntags=3) and the second and third elements contain either the tags 
of faces in the model, or PK_ENTITY_null. These indicate which faces are on 
each side of the line corresponding to the segment in the 2D picture. (The faces 
may or may not be adjacent to the edge or silhouette in the 3D model.)

A PK_ENTITY_null indicates that the region of the picture on that side of the line 
is either part of a face not tagged for regional data or outside the 2D 
representation of the model (the “outside” of the picture). 

The face tags also imply a sense to the line, which is required to interpret the 
point indices correctly. tags[1] is the left face, and tags[2] the right.

4.5.2 Point indices
The lntp array is of length 7 for a segment with regional data. Elements 
lntp[5] and lntp[6] are the start index and end index respectively for the 
line. They are non-zero integer values, and specify which “points” of the two-
dimensional picture the segment joins.
Suppose segment A has end index x, and segment B has start index x. Then the 
end point of A and the start point of B should be regarded as the same point in 
the two-dimensional picture, even if their geometric projections do not exactly 
coincide. (This may happen as the result of numerical approximations in 
rendering.) You will also find that of all the lines sharing a point index, one with it 
as an end index and one with it as a start index share an adjacent face on the left, 
and so these two can be linked up as consecutive portions of the boundary of a 
region; and similarly with faces on the right. The values used for point indices are 
not in any meaningful order.

4.6 Graphical output of pixel data
Another part of the GO consists of three functions for producing pixel data. These 
were required to support the KI function RRPIXL. These functions do not need to 
be implemented to support the PK (they can be supplied in dummy form).

Function Description
GOOPPX open output of encoded pixel data
GOPIXL output encoded pixel data
GOCLPX close output of encoded pixel data
Downward Interfaces 55



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

See Appendix I, “Legacy Functions”, for further information on the interface to 
these functions.
56 Downward Interfaces



5Registering the Frustrum

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Introduction
The application writer has several options for providing the Frustrum functions for 
Parasolid to use. 

5.2 Object-file frustrum
When Parasolid is used as an object-file library, the Frustrum, GO and Foreign 
Geometry functions must also be compiled and linked with it. These functions are 
specified in Appendix A, “Frustrum Functions” and Appendix B, “Graphical 
Output Functions”.

The functions can be split into logical groups, as shown in Figure 5–1.

Figure 5–1 Grouping of Frustrum functions

Simple functions are provided for initial testing in the files frustrum.c and 
fg.c in the Parasolid release area.

5.3 Registered frustrum
Parasolid may be supplied as a shared image as well as an object-file library.

Group Functions
Control FSTART FABORT FSTOP
Memory Management FMALLO FMFREE
File I/O FFOPRD FFOPWR FFREAD FFWRIT 

FFCLOS
Graphics GOOPSG GOSGMT GOCLSG
Foreign Geometry (curves) FGCRCU FGEVCU FGPRCU
Foreign Geometry (surfaces) FGCRSU FGEVSU FGPRSU
Rollback (obsolete) FFOPRB FFSEEK FFTELL
Shaded Images (obsolete) GOOPPX GOPIXL GOCLPX
Downward Interfaces 57



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the following method is used to provide a registered frustrum, the functions do 
not need to have the 6-letter FORTRAN-style names.

Parasolid still needs to call the Frustrum, GO and Foreign Geometry functions 
but the image must use a different mechanism to the object-file library. This is 
done using the PK function PK_SESSION_register_frustrum. The installed 
Frustrum can then be identified using the PK function 
PK_SESSION_ask_frustrum.
There is an example of registering the Frustrum in this way included in the file 
parasolid_test.c in the Parasolid release area.

A C structure is defined, with an element for each required function, and the 
application must register this with Parasolid before starting the modeler. For 
example:

This mechanism can also be used with the supplied object-file library: it is not 
specific to the shared image implementation. The advantages to the application 
of using a registered frustrum are that:

� The application-supplied functions no longer need to have the six letter 
FORTRAN-style names (as specified in the “Frustrum Functions” chapter).

� The application no longer needs to supply all the specified functions: e.g. if 
the application uses the PK_DELTA_* functions for partitioned rollback, the 
functions FFOPRB, FFSEEK and FFTELL need not be registered.

All applications must supply equivalents of FMALLO and FMFREE. The other 
functions fall into the groups shown in Figure 5–1, and an application can omit 
group of functions as required.
If a non-registered function is accessed, then Parasolid may fail with ifail 
KI_fru_missing or PK error code PK_ERROR_fru_missing. As an example, an 
application which does not make use of of Foreign Geometry might receive a part 
from another application which does.

An application using the shared image can replace the Parasolid image with an 
updated version without relinking. It is important that the the Parasolid 
version in the new library is compatible with the old one. To guard against an 
incompatible combination, the application can enquire the version number of the 
installed Parasolid using PK_SESSION_ask_kernel_version. For example:

PK_SESSION_frustrum_t fru;
PK_SESSION_frustrum_o_m(fru);
fru.fmallo = my_fmallo;
fru.fmfree = my_fmfree;
<etc.>
PK_SESSION_register_frustrum(&fru);
STAMOD (&kijon,&nchars,jfilnm,&usrfld,&world,&kivrsn,&ifail);
58 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This function may be called at any time, in particular, without starting the modeler, 
by calling this function in the shared image.

5.4 Application I/O
There is a transmit file format called ‘application i/o’, or ‘applio’. When this format 
is selected in PK_PART_transmit and PK_PARTITION_transmit, transmit files 
are written and read using a suite of functions provided by the application. Using 
these functions enables the application to do further processing of the output 
data before storing it.
The functions open files, read and write chars, bytes, shorts, ints and doubles to/
from these files, and close the files; they are registered using 
PK_SESSION_register_applio.

Note that the application is responsible for any conversion required between 
machine types (e.g. for endian byte ordering and floating point representation). 
The read functions must be handed the correct number of computation-ready 
data items, as written out by the write functions.

Snapshot files cannot use this format – they must be text or machine-dependent 
binary.

PK_SESSION_kernel_version_t info;
PK_SESSION_ask_kernel_version (&info);
if (info.major_revision<9)

{
fprintf (stderr, "Parasolid v9 is required");
exit (EXIT_FAILURE);
}

Downward Interfaces 59



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60 Downward Interfaces



A
AFrustrum Functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1 Introduction
This appendix contains the specifications of the Frustrum functions required by 
the PK functions for file and memory handling.

A.2 FSTART – Start up the Frustrum

This function initializes the Frustrum. It is called from PK_SESSION_start and is 
the first Frustrum function to be called. 

Calls to FSTART and FSTOP may be nested (e.g. when replaying a journal file). 
Only the “outermost” calls (i.e. the first FSTART call, and the “balancing” FSTOP 
call) should have any effect. However, once the Frustrum has been closed down, 
a further FSTART call should cause it to be re-initialized. 

Parasolid assumes that FSTART always succeeds; it should always return 
FR_no_errors. 

A.3 FABORT – Called at the end of an 
aborted kernel operation

This function is called by the kernel following a kernel operation which was 
aborted by a call to PK_SESSION_abort, when PK_SESSION_abort has been 
called with the token PK_abort_user_interrupt_c.

FABORT allows the application to do any generic tidying following the abort and/
or do a long-jump back to a “recovery-point” within the application code (this is 

void FSTART
(
--- returned arguments ---
int *ifail --- Return codes: FR_no_errors
)

void FABORT
(
--- returned arguments ---
int *ifail --- Return codes: FR_no_errors
)

Downward Interfaces 61



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Functions
the only case where it is legitimate for a Frustrum function to do such a long-
jump).

It may be sensible for applications to call FABORT to clean up their Frustrum 
after a run-time error has occurred and been returned to the application through 
the PK or KI. This depends on the design of the application and its Frustrum.
For further details, see PK_SESSION_abort in the PK Interface Programming 
Reference Manual, and Chapter 58, “Error Handling”, in the Functional 
Description.

A.4 FSTOP – Shut down the Frustrum

This function shuts down the Frustrum, and is called from PK_SESSION_stop. 
Calls to FSTART and FSTOP may be nested; in this case only the “outermost” 
calls should have any effect. 

A.5 FMALLO – Allocate virtual memory

This function allocates the specified amount of virtual memory (in bytes), 
returning a pointer to the start address. The memory which is allocated can be 
accessed using byte addresses in the range memory[0] to memory[nbytes-1].

Where the host machine is sensitive to word-alignment, FMALLO must ensure 
that the allocated memory begins on a word-boundary.
If the requested allocation cannot be met, error code FR_memory_full is 
returned, and no space is allocated.

By default, the minimum amount of memory requested is about 1/8 Mbyte. You 
can set and enquire the current value of this minimum block of memory using the 
functions PK_MEMORY_set_block_size and PK_MEMORY_ask_block_size, 

void FSTOP
(
--- returned arguments ---
int *ifail --- Return codes: FR_no_errors
)

void FMALLO
(
--- received arguments ---
int *nbytes, --- length of memory region in bytes
--- returned arguments ---
char **memory, --- pointer to start of memory
int *ifail --- Return codes: FR_no_errors
)

62 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

respectively. For complex cases, or those which require a lot of data storage, 
Parasolid may request more.

A.6 FMFREE – Free virtual memory

This function frees virtual memory, previously allocated by FMALLO.

The pointer to the start of block of virtual memory is which has been returned 
earlier and the length of the memory region must correspond to the length 
requested when the allocation was made.

A.7 FFOPRD – Open all guises of file for 
reading

This function opens all guises of existing files for reading i.e., snapshot, journal, 
C and Fortran transmit, schema and licence files.
If the skiphd flag is set to FFSKHD, the header data is skipped when the file is 
opened. This is the mode which is used by Parasolid.

void FMFREE
(
--- received arguments ---
int *nbytes, --- length of memory region in bytes
char **memory, --- pointer to start of memory
--- returned arguments ---
int *ifail --- Return codes: FR_no_errors
)

void FFOPRD
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL, FFCXMT 

--- FFCXMO, FFCSCH, FFCLNC
const int *format, --- format code: FFBNRY, FFTEXT
const char name[], --- key which identifies file

--- terminator not required)
const int *namlen, --- length of name
const int *skiphd, --- action required on opening file:

--- FFSKHD, FFLVHD
--- returned arguments ---
int *strid, --- id for stream on which file is open
int *ifail --- Return codes: FR_no_errors, FR_bad_name,

--- FR_not_found, FR_bad_header,FR_open_file
)

Downward Interfaces 63



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Functions
If the skiphd flag is set to FFLVHD, the header data is not skipped when the file 
is opened; the preamble, the parts data and the trailer are read by subsequent 
calls to FFREAD. This mode is only used by the TESTFR to validate what has 
been written by a particular implementation.

The function returns a Frustrum stream identifier or “strid”. This is used in 
subsequent calls to FFREAD and FFCLOS.

A.8 FFOPWR – Open all guises of file for 
writing

This function opens all guises of new files for reading i.e. schema, C transmit, 
journal snapshot and licence files.

The pr2hdr string contains data to be inserted by the Frustrum into the part 2 
section of the file header. See the documentation for PK_FFOPWR_f_t in 
PK_SESSION_frustrum_t.
The function returns a Frustrum stream identifier or “strid”. This is used in 
subsequent calls to FFWRIT and FFCLOS.

void FFOPWR
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL, FFCXMT

--- FFCSCH, FFCLNC, FFCDBG
const int *format, --- format code: FFBNRY, FFTEXT, FFXML
const char name[], --- key which identifies file

--- (terminator not required)
const int *namlen, --- length of name
const char pr2hdr[], --- part 2 header data 

--- (terminator not required)
const int *pr2len, --- length of part 2 header data
--- returned arguments ---
int *strid, --- id for stream on which file is open
int *ifail --- Return codes:  FR_no_errors,

--- FR_bad_name, FR_already_exists,
--- FR_open_fail, FR_write_fail,
--- FR_disc_full

)

64 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.9 UCOPRD – Open various guises of 
file for reading using Unicode key

This function opens various guises of existing part files for reading i.e., C 
transmit, partition and deltas, and snapshot files, using a Unicode key.

If skiphd is PK_LOGICAL_true (the usual case), the header data is skipped 
when the file is opened. This is the mode which is used by Parasolid.
If skiphd PK_LOGICAL_false, the header data is not skipped when the file is 
opened; the preamble, the parts data and the trailer are read by subsequent calls 
to FFREAD. This mode is only used by the TESTFR to validate what has been 
written by a particular implementation.

The function returns a Frustrum stream identifier or “strid”. This is used in 
subsequent calls to FFREAD and FFCLOS.

void UCOPRD
(
--- received arguments ---
const int guise, --- class of file: FFCSNP, FFCXMT, FFCXMP

--- FFCXMD, snapshot, C-transmit,
--- partition, delta

const int format, --- format code: FFBNRY, FFTEXT
const PK_UCHAR_t name[], --- key which identifies file

--- (null-terminated Unicode)
const PK_LOGICAL_t skiphd, --- action required on opening file
--- returned arguments ---
int strid, --- id for stream on which file is open
int *ifail --- Return codes: FR_no_errors, FR_bad_name,

--- FR_not_found,FR_bad_header, FR_open_file
)

Downward Interfaces 65



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Functions
A.10 UCOPWR – Open various guises of 
file for writing using Unicode key

This function opens various guises of new files for writing i.e. schema, C transmit, 
snapshot, partition and delta files, using a Unicode key.

The pr2hdr string contains data to be inserted by the Frustrum into the part 2 
section of the file header. See the documentation for PK_UCOPWR_f_t in 
PK_SESSION_frustrum_t.
The function returns a Frustrum stream identifier or “strid”. This is used in 
subsequent calls to FFWRIT and FFCLOS.

A.11 FFCLOS – Close file

This function closes a Frustrum file which has been opened with FFOPRD or 
FFOPWR. If the file is newly created, the calling function can determine whether 
to retain the file (FFNORM) or to delete it (FFABOR).

void UCOPWR
(
--- received arguments ---
const int guise, --- class of file: FFCSNP, FFCXMT, FFCXMP

--- FFCXMD, snapshot, C-transmit,
--- partition, delta

const int format, --- format code: FFBNRY, FFTEXT, FFXML
const PK_UCHAR_t name[], --- key which identifies file

--- (null-terminated Unicode)
const char pr2hdr[], --- part 2 header data

--- (null-terminated)
--- returned arguments ---
int *strid, --- id for stream on which file is open
int *ifail --- Return codes: FR_no_errors, FR_bad_name,

--- FR_already_exists, FR_open_fail,
--- FR_write_fail, FR_disc_full

)

void FFCLOS
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL, FFCXMT

--- FFCXMO, FFCSCH, FFCLNC, FFCDBG
const int *strid, --- Frustrum strid
const int *action, --- type of close: FFNORM, FFABOR
--- returned arguments ---
int *ifail --- Return codes: FR_no_errors FR_close_fail 

--- FR_disc_full
)

66 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.12 FFREAD – Read from file

This function reads from file (starting at the current position of the file pointer) 
storing a maximum of *nmax characters or bytes in the given buffer and returning 
the actual number of characters or bytes read as *nactual. The file pointer is 
incremented by the number of characters or bytes read.
In most cases, the number of characters read equals the number requested, 
except when the end of file is reached or a read error occurs. If the Frustrum 
implementation is only able to read a maximum of N bytes (where 0<N<=*nmax) 
Parasolid detects this condition and makes the necessary follow-up calls to 
FFREAD (which may affect performance).

If FFREAD reads at least one character, the ifail code is set FR_no_errors (or 
possibly FR_read_fail). The ifail code FR_end_of_file is only returned when no 
bytes have been read.

A.13 FFWRIT – Write to file

void FFREAD
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL FFCXMT,

--- FFCXMO, FFCSCH, FFCLNC
const int *strid, --- Frustrum strid
const int *nmax, --- maximum number of chars to read
--- returned arguments ---
char buffer[], --- buffer containing read data
int *nactual, --- actual number of characters read
int *ifail --- Return codes:  FR_no_errors,

--- FR_read_fail, FR_end_of_file
)

void FFWRIT
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL, 

--- FFCXMT, FFCSCH, FFCDBG
const int *strid, --- Frustrum strid
const int *nchars, --- number of chars/bytes to write >=0
const char buffer[], --- buffer containing data to write
--- returned arguments ---
int *ifail --- Return codes:  FR_no_errors,

--- FR_write_fail, FR_disc_full  
)

Downward Interfaces 67



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Functions
This function writes the contents of the buffer to file, starting at the current 
position of the file pointer. The file pointer is incremented by the number of 
characters or bytes written.

A.14 FTMKEY – Returns sample name keys

This function is used by validation TESTFR for testing FFOPRD and FFOPWR.

Different values of index should cause different name keys to be generated.
If index is greater than zero, the function returns valid name keys which are 
used as arguments to FFOPWR and FFOPRD. The name keys should be 
chosen such that the files generated by TESTFR can readily be distinguished 
from other files, and can be (safely) deleted at the end of the test.

If index is less than zero, the function returns invalid name keys – they should 
be rejected by FFOPWR and FFOPRD with ifail code FR_bad_name.

If the implementation of FFOPWR and FFOPRD does not allow the same name 
to be used for different guise and format types, the names returned by FTMKEY 
must take account of the guise and format arguments in the returned string such 
as by encoding them as part of the name.
The returned names must not exceed 255 characters in length.

void FTMKEY
(
--- received arguments ---
const int *guise, --- class of file: FFCSNP, FFCJNL, FFCXMT,

--- FFCXMO, FFCSCH, FFCLNC
const int *format, --- format code: FFBNRY, FFTEXT
const int *index, --- index for different name keys:

--- negative=supply invalid name
--- positive/zero=supply valid name

--- returned arguments ---
char name[], --- key which identifies file

--- (null terminated string)
int *namlen, --- length of name (max=255) 

---(excluding terminator)
int *ifail --- Return codes:  FR_no_errors
)

68 Downward Interfaces



B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BGraphical Output
Functions
B.1 Introduction
This appendix contains the specifications of the Graphical Output functions; 
these render graphical data generated by the PK line drawing functions:
� PK_GEOM_render_line
� PK_TOPOL_render_line
� PK_TOPOL_render_facet

B.2 GOSGMT – output non hierarchical 
segment

The arguments have the following significance.

segtyp The type of the segment; one of the following values:

void GOSGMT
(

/* received arguments */
const int *segtyp, /* type (SGTPED, SGTPSI, SGTPPH...) */
const int *ntags, /* size of tag array */
const int *tags, /* tags associated with segment */
const int *ngeom, /* size of geom array */
const double *geom, /* geometry of segment */
const int *nlntp, /* size of line type array */
const int *lntp, /* occ num, geom type, smoothness... */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

SGTPED 2006 Edge
SGTPSI 2007 Silhouette line
SGTPPH 2008 Planar hatch-line
SGTPRH 2009 Radial hatch-line
SGTPRU 2010 Rib line (unfixed blend)
SGTPBB 2011 Blend-boundary line
SGTPPL 2012 Parametric hatch line
SGTPFT 2016 Facet
Downward Interfaces 69



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
ntags, tags An array of tags associated with the segment. The tags given depend upon the 
segment type as follows:

If edges, silhouettes or hatchlines are output hierarchically then the tag 
information is given by GOOPSG and GOCLSG.

When rendering a list of entities Parasolid may encounter a body, face or edge 
which it is unable to render (e.g. a rubber face). In such a case, Parasolid outputs 
an error segment (SGTPER), giving the tag of the bad entity and a code 
indicating why it was unable to render it, and then continue to render the 
remaining entities.

SGTPER 2018 Error segment
SGTPGC 2019 Geometry ... curve
SGTPGS 2020 Geometry ... surface
SGTPGB 2021 Geometry ... surface boundary
SGTPMF 2022 Mangled facet
SGTPVT 2023 Visibility segment (used for hierarchical output)
SGTPTS 2024 Facet strip
SGTPVP 2025 Parametrised Visibility segment

SGTPED tag of edge (or none if edge output hierarchically)
SGTPSI
SGTPPH
SGTPRH

tag of face on which silhouette or hatch line lies
(or none if silhouette or hatch line output hierarchically)

SGTPRU
SGTPBB

tag of edge blended

SGTPPL tag of face or surface on which parametric hatch line lies
(or none if hatchline output hierarchically)

SGTPFT tag of face on which facet lies
SGTPER tag of entity which could not be rendered
SGTPGC tag of the curve
SGTPGS tag of the surface
SGTPGB tag of the surface for which this is a boundary curve
SGTPMF tag of face on which mangled facet lies
SGTPVT none
SGTPTS tag of face on which facet strip lies
SGTPVP none
70 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If user tolerances can't be matched during faceting, or facets are created which 
self intersect or are severely creased, then geometric data is output as a 
segment type SGTPMF. In this case, the facets are always triangular.

This does not apply to geometry (i.e. SGTPGC, SGTPGS and SGTPGB). These 
are never replaced by error segments, unrenderable geometry segments are not 
output at all.
If edges/silhouettes/hatchlines are being output hierarchically then GOSGMT is 
called to output the whole geometry of the item (optional) and again to output the 
positions at which the visibility changes on the item (a visibility segment).

If regional data was requested in a hidden line drawing two further tags are given 
for SGTPED and SGTPSI segments, identifying the faces either side of the line 
in the image. Either or both face tags may be null.

If edge tags were requested in a faceted drawing, for each edge of the facet the 
tag of the model edge from which it was derived is given; or a null tag if it is not 
derived from a model edge. The number of edge tags given equals the number 
of vertices given in geom. The first edge tag ( tags[1] ) is the tag of the edge from 
which is derived the first facet edge (which ends at the first vertex given in geom). 
The second edge tag is for the facet edge which ends at the second vertex, and 
so on.
If facet strips have been requested in a faceted drawing the format for the edge 
tags is as follows:

If the strip has n vertices, then there are edge tags.

The i-th element of the tags array (starting at ) is the tag of the edge 
between vertex ,
 and vertex ,

 where is the integer portion of x.

ngeom, geom An array of reals giving the geometry of the segment.
The values given depend upon the type of the geometry, as specified in the 
second element of lntp.

L3TPSL – straight line: ngeom = 9 

� start point, end point, line direction
L3TPCC – complete circle: ngeom = 7 

� center point, axis direction, radius

The forward direction of the circle is clockwise when viewing the circle along the 
axis direction.
L3TPCI – circular arc: ngeom = 13 

� center point, axis direction, radius, start point, end point

2 n 2–( ) 1+

i 1=
floor i 1–� � 2�( ) 1+

floor i 2�( ) 2+

floor x( )
Downward Interfaces 71



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
The forward direction of the circle is as given above.

L3TPCE – complete ellipse: ngeom = 11 
� center point, major axis direction, minor axis direction, major radius, minor 

radius

The forward direction of the ellipse is clockwise when viewing the ellipse along 
the axis direction. The axis direction is the vector cross product of the major axis 
with the minor axis in that order.

L3TPEL – elliptical arc: ngeom = 17 
� center point, major axis direction, minor axis direction, major radius, minor 

radius, start point, end point

The forward direction of the ellipse is as given above.

L3TPPY – poly line: 
geom holds ngeom vectors.

L3TPPC – non-rational B-curve in Bezier form: 
geom holds ngeom vectors of dimension 3.
These are the Bezier vertices of the curve.

L3TPRC – rational B-curve in Bezier form: 
geom holds ngeom vectors of dimension 4.
These are the Bezier vertices of the curve, where each Bezier vertex consists of 
a 3-space point and a weight. 

L3TPNC – non-rational B-curve in NURBs form: 
geom holds ngeom reals. These consist of:
� lntp[9] vectors of dimension 3, which are the b-vertices
� lntp[10] reals which are the knots

So ngeom = 3 (lntp[9]) + lntp[10]).

L3TPRN – rational B-curve in NURBs form: 
geom holds ngeom reals. These consist of:

� lntp[9] vectors of dimension 4, which are b-spline vertices where each vertex 
consists of a 3-space point followed by a weight

� lntp[10] reals which are knots

So ngeom = 4 (lntp[9]) + lntp[10]).
L3TPFV – facet vertices: 
geom holds ngeom vectors defining the vertices of a facet.
72 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L3TPFN – facet vertices + surface normals: 
geom holds:
� ngeom/2 vectors defining the vertices of a facet
� ngeom/2 vectors defining the surface normals at the vertices

L3TPFP – facet vertices + parameters 

geom holds:
� ngeom/2 vectors defining the vertices of a facet
� ngeom/2 vectors defining the surface and curve parameters (u,v,t) of the 

vertex

L3TPFI – facet vertices + normals + parameters 

geom holds:
� ngeom/3 vectors defining the vertices of a facet
� ngeom/3 vectors defining the surface normals at the vertices
� ngeom/3 vectors defining the surface and curve parameters (u,v,t) of the 

vertex

L3TPF1 – facet vertices + normals + parameters + 1st derivs 

geom holds
� ngeom/5 vectors defining the vertices of a facet
� ngeom/5 vectors defining the surface normals at the vertices
� ngeom/5 vectors defining the surface and curve parameters (u,v,t) of the 

vertex
� ngeom/5 vectors defining the dP/du surface derivatives at the vertices
� ngeom/5 vectors defining the dP/dv surface derivatives at the vertices

L3TPF2 – facet vertices + normals + parameters + all derivs 

geom holds
� ngeom/8 vectors defining the vertices of a facet
� ngeom/8 vectors defining the surface normals at the vertices
� ngeom/8 vectors defining the surface and curve parameters (u,v,t) of the 

vertex
� ngeom/8 vectors defining the dP/du surface derivatives at the vertices
� ngeom/8 vectors defining the dP/dv surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/du2surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/dudv surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/dv2 surface derivatives at the vertices

L3TPTS – facet strip vertices: 
geom holds ngeom vectors defining the vertices of a facet strip.
Downward Interfaces 73



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
L3TPTN – facet strip vertices plus surface normals: 
geom holds:
� ngeom/2 vertices defining the vertices of a facet strip
� ngeom/2 vectors defining the surface normals at the vertices

L3TPTP – facet strip vertices plus parameters: 
geom holds:
� ngeom/2 vectors defining the vertices of a facet strip
� ngeom/2 vectors defining the surface and curve parameters (u,v,t) of the 

vertex

L3TPTI – facet strip vertices plus normals plus parameters: 
geom holds:
� ngeom/3 vectors defining the vertices of a facet strip
� ngeom/3 vectors defining the surface normals
� ngeom/3 vectors defining the parameters of the vertex

L3TPT1 – facet strip vertices + normals + parameters + 1st derivs 

geom holds:
� ngeom/5 vectors defining the vertices of a facet
� ngeom/5 vectors defining the surface normals at the vertices
� ngeom/5 vectors defining the surface and curve parameters (u,v,t) of the 

vertex
� ngeom/5 vectors defining the dP/du surface derivatives at the vertices
� ngeom/5 vectors defining the dP/dv surface derivatives at the vertices

L3TPT2 – facet strip vertices + normals + parameters + all derivs 

geom holds:
� ngeom/8 vectors defining the vertices of a facet
� ngeom/8 vectors defining the surface normals at the vertices
� ngeom/8 vectors defining the surface and curve parameters (u,v,t) of the 

vertex
� ngeom/8 vectors defining the dP/du surface derivatives at the vertices
� ngeom/8 vectors defining the dP/dv surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/du2surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/dudv surface derivatives at the vertices
� ngeom/8 vectors defining the d2P/dv2 surface derivatives at the vertices

If a facet has multiple loops the outer loop is output first and the inner loops 
follow. The vertices of the outer loop are ordered anticlockwise when viewed 
down the surface normal. The vertices of inner loops are ordered clockwise. 
Facets are manifold; i.e. no vertex coincides with any other in the same facet, nor 
does it lie in any edge in the same facet. 
74 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For facet strips the vertices of the first facet in the strip are held in elements 0, 1 
and 2 of geom and are ordered anticlockwise when viewed down the surface 
normal. The vertices of the second facet are held in elements 1, 2 and 3 and are 
ordered clockwise. The vertices of the n-th facet are held in elements n-1, n and 
n+1 and are ordered anticlockwise if n is odd and clockwise if n is even. If lntp[1] 
is L3TPTS then the number of facets in a strip is given by ngeom-2. If lntp[1] is 
L3TPTN then the number of facets is given by ngeom/2 – 2.

For visibility segments (SGTPVT/SGTPVP) geom contains the visibility transition 
points (i.e. vectors in model space at which the edge changes visibility). 
Segments of type SGTPVP contain parameters as well. If the edge has only one 
visibility then no geometry is output.
The geometry array in an unparametrised (SGTPVT) visibility segment holds a 
sequence of sets of three doubles (x, y, z,) corresponding to the vector position 
of the transition points in model space.

The geometry array in a parametrised (SGTPVP) visibility segment holds a 
sequence of sets of four doubles (x, y, z, t) corresponding to the vector position 
of the transition points and their parameter on the geometry segment.

For error segments (SGTPER) ngeom is zero.
nlntp, lntp An array of integers specifying the type of geometry of the segment and other 

codes as follows:

 lntp[0] – Occurrence number of the entity from which the segment was derived.

If the segment type is SGTPER 
 lntp[1] – Reason why Parasolid is unable to render the entity:

If the segment type is SGTPVT or SGTPVP 

� lntp contains an array of visibility codes for the edge/silhouette/hatchline
� lntp + nlntp holds the smoothness codes for the edge
See “Visibility Segment: SGTPVT” in Chapter 4, “Graphical Output”, for more 
detail.

ERNOGO 4001 unspecified error
ERRUBB 4002 Rubber entity (no geometry attached)
ERSANG 4003 Surface angular tolerance too small
ERSDIS 4004 Surface distance tolerance too small
ERCANG 4005 Curve angular tolerance too small
ERCDIS 4006 Curve distance tolerance too small
ERCLEN 4007 Chord chord length tolerance too small
ERFWID 4008 Facet width tolerance too small
Downward Interfaces 75



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
Otherwise 

lntp[1] – Geometry type; one of the values:

If the geometry type is anything except L3TPFV, L3TPFN, L3TPTS or 
L3TPTN: 
lntp[2] – Completeness; one of the values:

lntp[3] – Visibility; one of the values:

L3TPSL 3001 Straight line
L3TPCI 3002 Partial circle
L3TPCC 3003 Complete circle
L3TPEL 3004 Partial ellipse
L3TPCE 3005 Complete ellipse
L3TPPY 3006 Poly-line
L3TPFV 3007 Facet vertices
L3TPFN 3008 Facet vertices plus surface normals
L3TPPC 3009 Non-rational B-curve
L3TPRC 3010 Rational B-curve
L3TPTS 3011 Facet strip vertices
L3TPTN 3012 Facet strip vertices + surface normals
L3TPNC 3013 Non-rational B-curve (NURBs form)
L3TPRN 3014 Rational B-curve (NURBs form)
L3TPFP 3015 Facet vertices + parameters
L3TPFI 3016 Facet vertices + normals + parameters
L3TPTP 3017 Facet strip vertices + parameters
L3TPTI 3018 Facet strip vertices + normals + parameters
L3TPF1 3019 Facet vertices + normals + parameters + 1st derivs
L3TPF2 3020 Facet vertices + normals + parameters + all derivs
L3TPT1 3021 Facet strip vertices + normals + parameters + 1st derivs
L3TPT2 3022 Facet strip vertices + normals + parameters + all derivs

CODCOM 1001 Segment complete
CODINC 1002 Segment incomplete
CODUNC 1003 Segment may or may not be complete
76 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
lntp[4] – Smoothness; one of the values

lntp[5] – Internal edge; one of the values

If segtyp is SGTPGC, SGTPGS or SGTPGB then lntp[2..5] are always 

If regional data was requested in a call to hidden line drawing, lntp[6] and lntp[7] 
contain start and end point indices for SGTPED and SGTPSI segments. The 
indices uniquely identify the image points at each end of the segment.

If the geometry type is L3TPF*:

CODVIS 1006 Line segment is visible
CODINV 1007 Line segment is invisible
CODUNV 1008 Visibility of line segment is unknown
CODDRV 1009 Line segment drafted visible
CODISH 1022 Line segment is invisible (hidden by own body occurrence)

CODSMO 1014 Edge is “smooth”
CODNSM 1015 Edge is not “smooth”
CODUNS 1016 Edge “smoothness” is unknown
CODSMS 1017 Edge “smooth” but coincident with silhouette

CODINE 1018 Edge is internal
CODNIN 1019 Edge is not internal
CODINU 1020 Not known whether edge is internal
CODINS 1021 Edge is internal, coincides with silhouette
CODIGN 1023 Edge lies on the boundary of an ignorable feature

lntp[2] CODUNC 1003 Segment may or may not be complete
lntp[3] CODUNV 1008 Visibility of segment is unknown
lntp[4] CODUNS 1016 “smoothness” is unknown
lntp[5] CODINU 1020 Not known whether internal

lntp[2] number of loops in facet
lntp[3], lntp[4], … number of vertices in each loop
Downward Interfaces 77



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
If the geometry type is L3TPT*:

If the geometry type is L3TPPC or L3TPRC:

If the geometry type is L3TPNC or L3TPRN:

If segtyp is SGTPMF there is one loop consisting of three vertices. 
If segtyp type is SGTPSI then the last element in the lntp array is the 
silhouette label. 

ifail A code indicating whether the Frustrum wants to abort graphic output; one of the 
values

B.3 GOOPSG – open hierarchical segment

The arguments have the following significance.

lntp[2] number of vertices on the facet strip

lntp[8] degree of the parametric curve

lntp[8] degree of the NURBs curve
lntp[9] number of b-spline vertices
lntp[10] number of knots

CONTIN 0 Continue: no errors
ABORT -1011 Abort: return control to caller

void GOOPSG
(

/* received arguments */
const int *segtyp, /* type (SGTPBY, SGTPFA ... ) */
const int *ntags, /* size of tag array */
const int *tags, /* tags associated with segment */
const int *ngeom, /* size of geom array */
const double *geom, /* geometry of segment */
const int *nlntp, /* size of line type array */
const int *lntp, /* occ num, geom type, smoothness... */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

78 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

segtyp The type of the segment; one of the following values:

ntags, tags An array of tags associated with the segment. The tags given depend upon the 
segment type as follows:

ngeom, geom An array of reals giving the geometry of the segment. The geometry given 
depends upon the segment type as follows:

SGTPBY 2003 body
SGTPED 2006 edge
SGTPSI 2007 silhouette
SGTPPH 2008 planar hatch-line
SGTPRH 2009 radial hatch-line
SGTPPL 2012 parametric hatch-line
SGTPFA 2017 face
SGTPGC 2019 geometry ... curve
SGTPGS 2020 geometry ... surface

SGTPBY tag of body
SGTPED tag of edge
SGTPSI SGTPPH SGTPRH SGTPPL tag of face
SGTPFA tag of face
SGTPGC tag of curve
SGTPGS tag of surface

SGTPBY model space box of the body, given as two 
vectors: (xmin, ymin, zmin), (xmax, ymax, zmax)

SGTPED SGTPSI SGTPPH 
SGTPRH SGTPPL

no geometry returned

SGTPFA model space box of the face
SGTPGC model space box of the curve
SGTPGS model space box of the surface
Downward Interfaces 79



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
nlntp, lntp An array of integers:

ifail A code indicating whether the Frustrum wants to abort graphic output; one of the 
values:

B.4 GOCLSG – close hierarchical segment

The arguments have the following significance:

segtyp The type of the segment; one of the following values:

lntp[0] occurrence number of the entity from which the segment was derived
lntp[1] silhouette label if segtyp is SGTPSI

CONTIN 0 Continue: no errors
ABORT -1011 Abort: return control to caller

void GOCLSG
(

/* received arguments */
const int *segtyp, /* type (SGTPBY, SGTPFA ... ) */
const int *ntags, /* size of tag array */
const int *tags, /* tags associated with segment */
const int *ngeom, /* size of geom array */
const double *geom, /* geometry of segment */
const int *nlntp, /* size of line type array */
const int *lntp, /* occ num, geom type, smoothness... */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

SGTPBY 2003 body
SGTPED 2006 edge
SGTPSI 2007 silhouette
SGTPPH 2008 planar hatch-line
SGTPRH 2009 radial hatch-line
SGTPPL 2012 parametric hatch-line
SGTPFA 2017 face
SGTPGC 2019 geometry ... curve
SGTPGS 2020 geometry ... surface
80 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ntags, tags An array of tags associated with the segment. The tags given depend upon the 

segment type as follows:

ngeom, geom An array of reals giving the geometry of the segment. The geometry given 
depends upon the segment type as follows:

nlntp, lntp An array of integers:

ifail A code indicating whether the Frustrum wants to abort graphic output; one of the 
values:

SGTPBY tag of body
SGTPED tag of edge
SGTPSI SGTPPH SGTPRH SGTPPL tag of face
SGTPFA tag of face
SGTPGC tag of the curve
SGTPGS tag of the surface

SGTPBY model space box of the body, given as two 
vectors: (xmin, ymin, zmin), (xmax, ymax, zmax)

SGTPED SGTPSI SGTPPH 
SGTPRH SGTPPL

no geometry returned

SGTPFA model space box of the face
SGTPGC model space box of the curve
SGTPGS model space box of the surface

lntp[0] Occurrence number of the entity from which the segment was derived
lntp[1] silhouette label if segtyp is SGTPSI

CONTIN 0 Continue: no errors
ABORT -1011 Abort: return control to caller
Downward Interfaces 81



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graphical Output Functions
82 Downward Interfaces



C
CPK_DELTA Functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C.1 Introduction
This appendix contains the specifications of the Frustrum functions required for 
the PK partitioned rollback system.
Partitioned rollback requires six registered frustrum functions. Together these 
functions provide a virtual file system in which byte streams may be created or 
read. Byte streams are denoted by PK_DELTA_t values, not filenames, and are 
referred to as delta files. The delta value, which is positive, is assigned by the 
application Frustrum.

The partition rolling mechanism works by storing the changes between pmarks. 
These record the entities which need to be created, modified or deleted in order 
to move from one pmark to an adjacent one (either backwards or forwards). 
These deltas are written out through the Frustrum interface, stored by the 
application Frustrum, and read back in during a roll operation.

C.1.1 Example PK_DELTA frustrum code
The file frustrum_delta.c in the Parasolid release area lists the code for an 
example PK_DELTA Frustrum, required for running the partitioned PK rollback 
system.

The example Frustrum is provided for the following purposes:
� To allow the building and running of the Parasolid installation acceptance test 

program.
� To allow users to build and run simple prototype applications using rollback 

without first having to write a complete Frustrum.
� To aid users in writing their own Frustrum.

This Frustrum contains the bare minimum required to be used, in order for it to 
remain clear and platform independent. Normally a Frustrum is written with a 
particular application in mind, and may make use of system calls rather than the 
C run-time library for enhanced performance.
Downward Interfaces 83



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PK_DELTA Functions
C.1.2 Criteria of use
� Delta files are not read beyond their length. 
� Delta files deleted by Parasolid (via delete) are not referred to again.
� The Frustrum must only delete files when told to.
� There may be more than one delta file associated with a given pmark at a 

given time.
� If a new pmark is created, and the partition is currently at a pmark, a zero-

length delta is output to the Frustrum, which must be stored.
� The pmark passed to the open_for_write function may sometimes be 

PK_PMARK_null, in which case the delta does not correspond to a pmark 
visible to the application. The application should store this delta as usual, 
and it is deleted by Parasolid when no longer required.

There is further information on the Frustrum requirements of Partitioned Rollback 
in Chapter 40, “Partitions and Rollback”, of the Parasolid Functional Description 
Manual.

C.1.3 Registering the rollback frustrum functions
The partitioned rollback functions must be registered with Parasolid by calling the 
function PK_DELTA_register_callbacks, before the Parasolid session is started.

open_for_write

Opens a new delta file for writing, associated with the given pmark. Returns a 
PK_DELTA_t value chosen by the Frustrum which Parasolid uses to identify this 
delta file.

If pmark is PK_PMARK_null, the delta file is internal to Parasolid and is deleted 
when no longer required.

Note: In the following Frustrum function definitions, the function names given 
are purely nominal, as the functions are registered by the call to 
PK_DELTA_register_callbacks.

PK_ERROR_code_t open_for_write
(
PK_PMARK_t pmark, /* pmark associated with delta */
PK_DELTA_t delta /* delta file to open */
)

84 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

open_for_read

Opens an existing, closed delta file for reading.

close

Closes delta file delta, which is open. The function close is provided as a 
courtesy to the application and is invoked as early as possible.

write

Writes n_bytes to the delta file delta (which is open) from the array bytes. 
n_bytes may often be as small as 20, so the application may wish to provide a 
buffering mechanism.

read

Reads n_bytes from the  delta file delta (which is open) to the array bytes. 
n_bytes may often be as small as 20, so the application may wish to provide a 
buffering mechanism. Parasolid never requests more bytes (in total) than were 
written. Parasolid does not guarantee that the sequence of values of n_bytes 
resembles those given to write.

PK_ERROR_code_t open_for_read
(
PK_DELTA_t delta /* delta file to open */
)

PK_ERROR_code_t close
(
PK_DELTA_t delta /* delta file to close */
)

PK_ERROR_code_t write
(
PK_DELTA_t delta, /* delta file to write */
int n_bytes, /* number of bytes to write */
char *bytes /* bytes to write */
)

PK_ERROR_code_t read
(
PK_DELTA_t delta, /* delta file to 
read */
int n_bytes, /* number of bytes to 
read */
char *bytes /* array in which to store read 
bytes */
)

Downward Interfaces 85



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PK_DELTA Functions
If bytes is NULL then no data should be written to the array, but the file position 
should be advanced.

delete

The function delete is used by Parasolid to indicate that the given delta (which 
exists and is closed) is not required again. Parasolid performs no further 
operations (including delete) on delta.

PK_ERROR_code_t delete
(
PK_DELTA_t delta /* delta file to delete */
)

86 Downward Interfaces



D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DPK_MEMORY
Functions
D.1 Introduction
This appendix contains the specifications of the Frustrum functions required for 
allocating and freeing memory, used when PK functions return variable length 
information. These functions are called by the PK functions PK_MEMORY_alloc 
and PK_MEMORY_free.
The functions should be type compatible with malloc and free in the standard C 
run-time library.

The section on “Memory management functions” in Chapter 1, “PK Interface 
Programming Concepts”, of the Parasolid PK Interface Programming Reference 
Manual (Part 1 – Functions) provides further information on the use of these 
functions.

The functions are allowed to longjump out of Parasolid in case of an error, with 
the same restrictions and requirements as the user registered error handling 
function (see Chapter 58, “Error Handling”, of the Parasolid Functional 
Description manual).

D.1.1 Registering the memory management 
functions
The memory management functions must be registered with Parasolid by calling 
the function PK_MEMORY_register_callbacks. This function can be called 
before starting a Parasolid modeling session, or during a session whenever 
Parasolid’s internal PK memory is empty.

If the functions have not been registered, or either of the function pointers given 
to PK_MEMORY_register_callbacks is NULL, Parasolid defaults to using the 
appropriate function from the standard C run-time-library when the application 
calls PK_MEMORY_alloc or PK_MEMORY_free.

Note: In the following Frustrum function definitions, the function names given 
are purely nominal, as the functions are registered by the call to 
PK_MEMORY_register_callbacks.
Downward Interfaces 87



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PK_MEMORY Functions
alloc

Called by the PK function PK_MEMORY_alloc. The allocator must return NULL 
in the event of an error.

free

Called by the PK function PK_MEMORY_free to free previously allocated 
memory.

void* alloc
(
size_t nbytes /* number of bytes required */
)

void free
(
void *pointer /* pointer to allocated memory */
)

88 Downward Interfaces



E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EApplication I/O
Functions
E.1 Introduction
This appendix contains the specifications of the application I/O (applio) functions 
which can be implemented to replace or extend the normal part file handling 
functions in the Frustrum. These functions are used during input and output of 
transmit files with ‘application i/o’ format.
There is further information on the use of the application i/o functions in the 
“Application I/O” section under “File formats” in Chapter 2, “File Handling”.

E.1.1 Registering the application I/O functions
The application i/o functions must be registered with Parasolid by calling the PK 
function PK_SESSION_register_applio, before the Parasolid session is started.

open_rd

Opens a file for reading with the given key. The strid returned identifies the file 
in later read/write operations.

Valid function returns are FR_no_errors, FR_not_found, FR_open_fail.

Note: In the following function definitions, the function names given are purely 
nominal, as the functions are registered by the call to 
PK_SESSION_register_applio.

int open_rd
(
int keylen,
const char* key,
int *strid
)

Downward Interfaces 89



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Application I/O Functions
open_wr

Opens a new file for writing with the given key. The strid returned identifies the 
file in later read/write operations.

Valid function returns are FR_no_errors, FR_already_exists, FR_disc_full, 
FR_open_fail.

open_uc_rd

Opens a file for reading with the given Unicode key. The strid returned 
identifies the file in later read/write operations. Valid functions returns are 
FR_no_errors, FR_not_found, FR_open_fail.

open_uc_wr

Opens a new file for writing with the given Unicode key. The strid returned 
identifies the file in later read/write operations. Valid function return are 
FR_no_errors, FR_already_exists, FR_end_of_file, and FR_write_error.

close

Closes the given file. If abort is 0, just close it. If abort is 1, close and delete 
the file (this may be given in the case of an error during transmit).

int open_wr
(
int keylen,
const char* key,
int *strid
)

int open_uc_rd
(
const PK_UCHAR_t *key,
int *strid
)

int open_uc_wr
(
const PK_UCHAR_t *key,
int *strid
)

int close
(
int strid,
int abort
)

90 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Valid returns are FR_no_errors, FR_close_fail.

Read (rd_****) functions
These functions are defined as follows for chars, bytes, shorts, ints and doubles. 
In all cases:

� the function reads one or more items of data from the given file
� valid returns are FR_no_errors, FR_end_of_file, FR_read_error

rd_chars

rd_bytes

rd_shorts

rd_ints

rd_doubles

int rd_chars
(
int strid,
int n,
char *data
)

int rd_bytes
(
int strid,
int n,
unsigned char *data
)

int rd_shorts
(
int strid,
int n,
short *data
)

int rd_ints
(
int strid,
int n,
int *data
)

int rd_doubles
(
int strid,
int n,
double *data
)

Downward Interfaces 91



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Application I/O Functions
Write (wr_****) functions
These functions are defined as follows for chars, bytes, shorts, ints and doubles. 
In all cases:

� the function writes one or more items of data to the given file
� valid returns are FR_no_errors, FR_end_of_file, FR_write_error

wr_chars

wr_bytes

wr_shorts

wr_ints

wr_doubles

int wr_chars
(
int strid,
int n,
const char *data
)

int wr_bytes
(
int strid,
int n,
const unsigned char *data
)

int wr_shorts
(
int strid,
int n,
const short *data
)

int wr_ints
(
int strid,
int n,
const int *data
)

int wr_doubles
(
int strid,
int n,
const double *data
)

92 Downward Interfaces



F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FAttribute Callback
Functions
F.1 Introduction
This appendix contains the specifications of the attribute callback functions which 
can be implemented to replace or extend the normal attribute handling process 
in Parasolid.
Further information on the use and effects of attribute callback functions can be 
found in Chapter 45, “Attribute Definitions”, and Chapter 46, “Attributes”, of the 
Parasolid Functional Description Manual.

F.1.1 Registering the attribute callback functions
The attribute callback functions must be registered with Parasolid by calling the 
PK function PK_ATTDEF_register_callbacks, at any time during a Parasolid 
session.

The functions can then be enabled and disabled during a modeling session by 
the PK function PK_ATTDEF_set_callback_flags.

split_callback

Called after the split has occurred. There are no attributes on the new entity.

Note: In the following function definitions, the function names given are purely 
nominal, as the functions are registered by the call to 
PK_ATTDEF_register_callbacks.

void split_callback
(
PK_ENTITY_t old_entity, /* the old entity */
int n_attribs, /* and its attributes */
const PK_ATTRIB_t attribs[],
PK_ENTITY_t new_entity /* the new entity */
)

Downward Interfaces 93



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Attribute Callback Functions
merge_callback

Called as the merge is about to occur.

delete_callback

Called as the deletion is about to occur.

copy_callback

Called after the copy has occurred. There are no attributes on the new entity.

transmit_callback

Called at the start of the PK function doing the transmit.

void merge_callback
(
PK_ENTITY_t live_entity, /* the entity which 
survives */
int n_live_attribs, /* and its 
attributes */
const PK_ATTRIB_t live_attribs[],
PK_ENTITY_t doomed_entity, /* the entity to be 
deleted */
int n_doomed_attribs, /* and its 
attributes */
const PK_ATTRIB_t doomed_attribs[]
)

void delete_callback
(
PK_ENTITY_t entity, /* the entity to be deleted */
int n_attribs, /* and its attributes */
const PK_ATTRIB_t attribs[]
)

void copy_callback
(
PK_ENTITY_t old_entity, /* the original entity */
int n_attribs, /* and its attributes */
const PK_ATTRIB_t attribs[],
PK_ENTITY_t new_entity /* the copy */
)

void transmit_callback
(
PK_ENTITY_t entity, /* the entity */
int n_attribs, /* and its attributes */
const PK_ATTRIB_t attribs[]
)

94 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

receive_callback

Called at the end of the PK function doing the receive.

void receive_callback
(
PK_ENTITY_t entity, /* the entity */
int n_attribs, /* and its attributes */
const PK_ATTRIB_t attribs[]
)

Downward Interfaces 95



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Attribute Callback Functions
96 Downward Interfaces



G

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GFrustrum Tokens and
Error Codes
G.1 Introduction
This appendix lists all the tokens and error codes used by the Frustrum functions. 
These values are defined in the files ‘frustrum_ifails.h’ and frustrum_tokens.h’ in 
the Parasolid release area.

G.2 Ifails 

G.3 File guise tokens 

FR_no_errors 0 operation was successful
FR_bad_name 1 bad file name
FR_not_found 2 file of given name does not exist
FR_already_exists 3 file of given name already exists
FR_end_of_file 4 file pointer is at end of file
FR_open_fail 10 unspecified open error
FR_disc_full 11 no space available to extend the file
FR_write_fail 12 unspecified write error
FR_read_fail 13 unspecified read error
FR_close_fail 14 unspecified close error
FR_memory_full 15 insufficient contiguous virtual memory
FR_bad_header 16 bad header found opening file for read
FR_rollmark_op_pass 20 rollmark operation within frustrum passed
FR_rollmark_op_fail 21 rollmark operation within frustrum failed
FR_unspecified 99 unspecified error

FFCROL 1 rollback file
FFCSNP 2 snapshot file
FFCJNL 3 journal file
Downward Interfaces 97



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Tokens and Error Codes
G.4 File format tokens 

G.5 File open mode tokens 

G.6 File close mode tokens 

G.7 Foreign geometry ifails

FFCXMT 4 transmit file (generated by Parasolid)
FFCXMO 5 transmit file (generated by Romulus)
FFCSCH 6 schema file
FFCLNC 7 licence file
FFCXMP 8 transmit file (partition)
FFCXMD 9 transmit file (delta)
FFCDBG 10 debug report file

FFBNRY 1 binary
FFTEXT 2 text
FFAPPL 3 applio
FFXML 4 XML text

FFSKHD 1 skip header after opening file for read (usual case)
FFLVHD 2 leave header after opening file for read (fru tests)

FFNORM 1 normal: default action on file close
FFABOR 2 abort: delete the newly created file

FGOPOK 0 Foreign geometry operation successful
FGOPFA 1 Foreign geometry operation failed
FGEVIN 2 Foreign geometry evaluation incomplete
FGPROP 3 Use default properties for foreign geometry
FGGEOM 4 Foreign geometry not found
98 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G.8 Foreign geometry operation codes

G.9 Foreign geometry evaluator codes

G.10 Rollmark operation codes

FGDATA 5 Foreign geometry data retreive error
FGFILE 6 Foreign geometry data file error
FGRERR 7 Foreign geometry real data error
FGIERR 8 Foreign geometry integer data error

FGRECU 01 Retreive foreign curve geometry
FGRESU 02 Retreive foreign surface geometry
FGCOCU 11 Copy foreign curve geometry
FGCOSU 12 Copy foreign surface geometry
FGFRCU 21 Free foreign curve geometry
FGFRSU 22 Free foreign surface geometry
FGTXCU 31 Transmitting foreign curve geometry
FGTXSU 32 Transmitting foreign surface geometry

FGEVTR 01 Triangular evaluation matrix required
FGEVSQ 02 Square evaluation matrix required
FGPRBD 01 Geometry parametrisation is bounded
FGPRPE 02 Geometry parametrisation is periodic

FRROST 1 Rollback status
FRROSE 2 Set a roll mark
FRROMA 3 Roll to a mark
FRRODT 4 Rollmark is out of date
FRROON 1 Rollback status is ON
FRROFF 0 Rollback status is OFF
Downward Interfaces 99



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Frustrum Tokens and Error Codes
100 Downward Interfaces



H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HGo Tokens and Error
Codes
H.1 Introduction
This appendix lists all the tokens and error codes used by the Graphical Output 
functions.

H.2 Ifails

H.3 Codes

CONTIN 0 Continue: no errors
ABORT -1011 Abort: return control to caller

CODCOM 1001 Segment complete
CODINC 1002 Segment incomplete
CODUNC 1003 Segment may or may not be complete
CODVIS 1006 Line segment is visible
CODINV 1007 Line segment is invisible
CODUNV 1008 Visibility of line segment is unknown
CODDRV 1009 Line segment is drafting
CODSMO 1014 Edge is “smooth”
CODNSM 1015 Edge is not “smooth”
CODUNS 1016 Edge “smoothness” is unknown
CODSMS 1017 Edge “smooth” but coincident with silhouette
CODINE 1018 Edge is internal
CODNIN 1019 Edge is not internal
CODINU 1020 Not known whether edge is internal
CODINS 1021 Edge is internal, coincides with silhouette
CODISH 1022 Line segment is invisible (hidden by own body occurrence)
CODIGN 1023 Edge lies on the boundary of an ignorable feature
Downward Interfaces 101



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Go Tokens and Error Codes
H.4 Line types

H.5 Segment types

L3TPSL 3001 Straight line
L3TPCI 3002 Partial circle
L3TPCC 3003 Complete circle
L3TPEL 3004 Partial ellipse
L3TPCE 3005 Complete ellipse
L3TPPY 3006 Poly-line
L3TPFV 3007 Facet vertices
L3TPFN 3008 Facet vertices plus surface normals
L3TPPC 3009 Non-rational B-curve
L3TPRC 3010 Rational B-curve
L3TPTS 3011 Facet strip vertices
L3TPTN 3012 Facet strip vertices plus surface normals
L3TPNC 3013 Non-rational B-curve (nurbs form)
L3TPRN 3014 Rational B-curve (nurbs form)
L3TPFP 3015 Facet vertices plus parameters
L3TPFI 3016 Facet vertices plus normals plus parameters
L3TPTP 3017 Facet strip vertices plus parameters
L3TPTI 3018 Facet strip vertices plus normal plus parameters
L3TPF1 3019 Facet verts + norms + params + 1st derivs
L3TPF2 3020 Facet verts + norms + params + all derivs
L3TPT1 3021 Facet strip verts + norms + params + 1st derivs
L3TPT2 3022 Facet strip verts + norms + params + all derivs

SGTPBY 2003 Body (hierarchical segment)
SGTPED 2006 Edge
SGTPSI 2007 Silhouette line
SGTPPH 2008 Planar hatch-line
SGTPRH 2009 Radial hatch-line
SGTPRU 2010 Rib line (unfixed blend)
102 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H.6 Error codes

SGTPBB 2011 Blend-boundary line
SGTPPL 2012 Parametric hatch line
SGTPFT 2016 Facet
SGTPFA 2017 Face (hierarchical segment)
SGTPER 2018 Error segment
SGTPGC 2019 Curve geometry segment
SGTPGS 2020 Surface geometry segment
SGTPGB 2021 Surface boundary geometry segment
SGTPMF 2022 Mangled facet
SGTPVT 2023 Visibility transitions
SGTPTS 2024 Facet strip
SGTPVP 2025 Parametrised Visibility segment

ERNOGO 4001 Unspecified error
ERRUBB 4002 Rubber entity (no geometry attached)
ERSANG 4003 Surface angular tolerance too small
ERSDIS 4004 Surface distance tolerance too small
ERCANG 4005 Curve angular tolerance too small
ERCDIS 4006 Curve distance tolerance too small
ERCLEN 4007 Curve chord length tolerance too small
ERFWID 4008 Facet width tolerance too small
Downward Interfaces 103



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Go Tokens and Error Codes
104 Downward Interfaces



I
ILegacy Functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I.1 Introduction
The Frustrum and Graphical Output functions documented in this appendix relate 
to functionality required only by routines defined in Parasolid’s previous interface, 
the Kernel Interface (KI).
These functions are documented for legacy purposes only, and should not be 
implemented for new Parasolid applications.

I.2 Pixel drawing functions
These functions were required to process pixel data generated by the KI function 
RRPIXL.

I.2.1 GOOPPX – open output of encoded pixel 
data

I.2.2 GOPIXL – output encoded pixel data

void GOOPPX
(

/* received arguments */
const int *nreals, /* number of reals in real array */
const double *rvals, /* real array */
const int *nints, /* number of integers in int array */
const int *ivals, /* integer array */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

void GOPIXL
(

/* received arguments */
const int *npixels, /* number of pixels to output */
const double *rvals, /* real array of pixel intensities */
const int *nints, /* number of integers in int array */
const int *ivals, /* integer array */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

Downward Interfaces 105



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Legacy Functions
I.2.3 GOCLPX – close output of encoded pixel 
data

I.3 Rollback file handling functions
These functions were required to handle files generated by the KI session 
rollback functionality.

I.3.1 FFOPRB – open rollback file

void GOCLPX
(

/* received arguments */
const int *nreals, /* number of reals in real array */
const double *rvals, /* real array */
const int *nints, /* number of integers in int array */
const int *ivals, /* integer array */

/* returned arguments */
int *ifail /* failure code: CONTIN or ABORT */
)

void FFOPRB
(

/* received 
arguments */
const int *guise, /* class of file: FFCROL 
(rollback) */
const int *minsiz, /* minimum size of file 
(bytes) */
const int *maxsiz, /* maximum size of file 
(bytes) */

/* returned 
arguments */
int *actsiz, /* actual size of file 
(bytes) */
int *strid, /* Frustrum 
strid */
int *ifail /* error 
code:FR_no_errors,FR_open_fail,FR_disc_full*/
)

106 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I.3.2 FFSEEK – reset file pointer

I.3.3 FFTELL – output file pointer

void FFOPRB
(

/* received arguments */
const int *guise, /* class of file: FFCROL */
const int *strid, /* Frustrum strid */
const int *pos, /* pointer into file stream */

/* returned arguments */
int *ifail /* error code: FR_no_errors */
)

void FFOPRB
(

/* received arguments */
const int *guise, /* class of file: FFCROL */
const int *strid, /* Frustrum strid */

/* returned arguments */
int *pos, /* pointer into file stream */
int *ifail /* error code:FR_no_errors */
)

Downward Interfaces 107



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Legacy Functions
108 Downward Interfaces



In
Index

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
ABORT

GO token 35
Abort Recovery 9
Adjacent Faces 55
Application I/O

file formats 19
registering the frustrum 59

Archiving
applio format 19

Assemblies 37

C
close

PK_DELTA frustrum frunction 85
CONTIN

GO token 35

D
delete

PK_DELTA frustrum frunction 86

E
Escape Sequences

general points 31
new line 30
semicolon 30
space 30
up_arrow 30

F
File Formats

frustrum file handling 18
File Guises

frustrum file handling 16
different characteristics 20

File Header
escape sequences 30

general points 31
new line 30
semicolon 30
space 30
up_arrow 30

example 29
frustrum file handling 17, 27
structure 27

keyword 27
format 28
pre-defined 31

preamble 27
format 28

trailer 27
syntax 29

File Names
frustrum file handling 15

Frustrum
abort recovery 9
errors 10

exception 10
illegal call 11
prediction 10

file handling 15
file formats 18
file guises 16

different characteristics 20
file headers 17, 27
file names 15
key names 15
open files

concurrently open 17
open modes 22
Downward Interfaces 109



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

new 22
protected 22
read 22

portability considerations 19
file header

escape sequences 30
general points 31
new line 30
semicolon 30
space 30
up_arrow 30

example 29
structure 27

keyword 27
format 28
pre-defined 31

preamble 27
format 28

trailer 27
syntax 29

initialization 9
memory management 9
routine for

invoking the verification tests 12
validation tests 11

frustrum
registering 57

Frustrum Errors 10
exception 10
illegal call 11
prediction 10

Frustrum Function
called at the end of an aborted kernel 

operation 61
FABORT 61
FFCLOS 62
FFOPRB 106
FFOPRD 63, 65
FFOPWR 64, 66
FFREAD 67
FFSEEK 107
FFTELL 107
FFWRIT 67
FMALLO 62
FMFREE 63

FSTART 61
FSTOP 62
FTMKEY 68
to allocate virtual memory 62
to close a frustrum file 62
to free virtual memory 63
to initialize the frustrum 61
to note the file pointer within a rollback file 

107
to open a new binary rollback file 106
to open all guises of file (except rollback) 

for read 63, 65
to open all guises of file (except rollback) 

for write 64, 66
to read from a file 67
to reset the pointer within a rollback file 107
to shut down the frustrum 62
to write to a file 67
used by TESTFR for testing FFOPRD and 

FFOPWR 68
Frustrum Routine

TESTFR 12

G
Geometry

segment output routines 42
GO Interface 35

GO Routines 35
GO Routine 35

GOCLSG 78
GOOPPX 105
GOOPSG 78
GOPIXL 105
GOSGMT 69
to close hierarchical segment 78
to open hierarchical segment 78
to open output of encoded pixel data 105
to output encoded pixel data 105
to putput non-hierarchical segment 69

GO Token
abort 35
contin 35

Graphical Data
110 Downward Interfaces



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

assemblies 37
line data 35

segments 35
structure 35

pixel data 55

I
Intialization

of the frustrum 9

K
Key Names

frustrum file handling 15
Keyword

file header structure 27, 28
pre-defined

file header structure 31

L
Line Data 35

segments 35
structure 35

Line Type
completeness 40
segment output routines 38
smoothness 41
visibility 40

M
Memory Managemnet 9

O
Open Files

frustrum file handling 17
Open Modes

frustrum file handling 22
new 22
protected 22

read 22
open_for_read

PK_DELTA frustrum frunction 85
open_for_write

PK_DELTA frustrum frunction 84, 93

P
Pixel Data 55
PK function

PK_SESSION_ask_unicode 17
PK_SESSION_set_unicode 17

PK_DELTA Frustrum
close function 85
delete function 86
open_for_read function 85
open_for_write function 84, 93
read function 85
write function 85

PK_DELTA frustrum functions 83, 87
PK_DELTA_register_callbacks 84, 87, 89, 93
Point Indices 55
Portability Considerations

frustrum file handling 19
Preamble

file header structure 27, 28

R
read

PK_DELTA frustrum frunction 85
Regional Data

adjacent faces 55
interpreting 54
point indices 42, 55

registering the frustrum 57
Rollmarks

criteria of use 84

S
Segment Types

blend-boundary line 49
body 47
Downward Interfaces 111



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

edge 48
error segment 50
face 48
facet 49
facet strip 52
geometric segment 50
mangled facet 50
parametric hatch-line 49
planar hatch-line 49
radial hatch-line 49
rib line 49
silhouette line 49
visibility segment 51

Segments 35
output routines 38

geometry 42
line type 38

completeness 40
smoothness 41
visibility 40

regional data
point indices 42

segment type 38, 47
blend-boundary line 49
body 47
edge 48
error segment 50
face 48
facet 49
facet strip 52
geometric segment 50
mangled facet 50
parametric hatch-line 49
planar hatch-line 49
radial hatch-line 49
rib line 49
silhouette line 49
visibility segment 51

tags 38
type 36

T
Tags

segment output routines 38
Trailer

file header structure 27

V
Validation Tests 11

W
write

PK_DELTA frustrum frunction 85
112 Downward Interfaces


	Table of Contents
	Introduction to the Frustrum
	1.1 Introduction
	1.1.1 Dummy frustrum

	1.2 Summary of functions
	1.2.1 Initialization
	1.2.2 Memory management

	1.3 Abort recovery
	1.4 Frustrum errors
	1.4.1 Prediction errors
	1.4.2 Exception errors
	1.4.3 Illegal call errors

	1.5 Validation tests
	1.5.1 TESTFR – invokes the verification tests for the frustrum


	File Handling
	2.1 Introduction
	2.1.1 Key names vs. file names
	2.1.2 Filename extensions
	2.1.3 File guises
	2.1.4 File header
	2.1.5 Number of files open concurrently

	2.2 Unicode filenames
	2.3 File formats
	2.3.1 Text and binary
	2.3.2 Application I/O
	2.3.3 Portability

	2.4 Characteristics of different file guises
	2.4.1 FFCSNP
	2.4.2 FFCJNL
	2.4.3 FFCXMT
	2.4.4 FFCSCH
	2.4.5 FFCLNC
	2.4.6 FFCXMP
	2.4.7 FFCXMD
	2.4.8 FFCDBG

	2.5 Open modes
	2.5.1 open_read
	2.5.2 open_new
	2.5.3 open_protected
	2.5.4 Summary of open modes

	2.6 Explanation of the special characters in a journal file
	Record and element symbols
	Punctuation symbols


	File Header Structure
	3.1 Introduction
	3.2 Structure of file header
	3.2.1 Format of the preamble
	3.2.2 Format of part data
	Part 1 data
	Part 2 data
	Part 3 data


	3.3 Example of simple file header
	3.4 Syntax of keyword definitions
	3.4.1 Escape sequences
	New line
	Space
	Semicolon
	Up arrow
	General points


	3.5 Pre-defined keywords
	3.5.1 Part 1 data
	3.5.2 Part 2 data
	3.5.3 Part 3 data


	Graphical Output
	4.1 Introduction
	4.2 Graphical output functions
	4.3 Structure of line data output
	4.3.1 Segment hierarchy
	4.3.2 Graphical data for assemblies
	4.3.3 Notes

	4.4 Segment output functions
	4.4.1 Tags
	4.4.2 Line type
	4.4.3 Geometry
	4.4.4 Segment types

	4.5 Interpreting regional data
	4.5.1 Adjacent faces
	4.5.2 Point indices

	4.6 Graphical output of pixel data

	Registering the Frustrum
	5.1 Introduction
	5.2 Object-file frustrum
	5.3 Registered frustrum
	5.4 Application I/O

	Frustrum Functions
	A.1 Introduction
	A.2 FSTART – Start up the Frustrum
	A.3 FABORT – Called at the end of an aborted kernel operation
	A.4 FSTOP – Shut down the Frustrum
	A.5 FMALLO – Allocate virtual memory
	A.6 FMFREE – Free virtual memory
	A.7 FFOPRD – Open all guises of file for reading
	A.8 FFOPWR – Open all guises of file for writing
	A.9 UCOPRD – Open various guises of file for reading using Unicode key
	A.10 UCOPWR – Open various guises of file for writing using Unicode key
	A.11 FFCLOS – Close file
	A.12 FFREAD – Read from file
	A.13 FFWRIT – Write to file
	A.14 FTMKEY – Returns sample name keys

	Graphical Output Functions
	B.1 Introduction
	B.2 GOSGMT – output non hierarchical segment
	B.3 GOOPSG – open hierarchical segment
	B.4 GOCLSG – close hierarchical segment

	PK_DELTA Functions
	C.1 Introduction
	C.1.1 Example PK_DELTA frustrum code
	C.1.2 Criteria of use
	C.1.3 Registering the rollback frustrum functions
	open_for_write
	open_for_read
	close
	write
	read
	delete



	PK_MEMORY Functions
	D.1 Introduction
	D.1.1 Registering the memory management functions
	alloc
	free



	Application I/O Functions
	E.1 Introduction
	E.1.1 Registering the application I/O functions
	open_rd
	open_wr
	open_uc_rd
	open_uc_wr
	close
	Read (rd_****) functions
	Write (wr_****) functions



	Attribute Callback Functions
	F.1 Introduction
	F.1.1 Registering the attribute callback functions
	split_callback
	merge_callback
	delete_callback
	copy_callback
	transmit_callback
	receive_callback



	Frustrum Tokens and Error Codes
	G.1 Introduction
	G.2 Ifails
	G.3 File guise tokens
	G.4 File format tokens
	G.5 File open mode tokens
	G.6 File close mode tokens
	G.7 Foreign geometry ifails
	G.8 Foreign geometry operation codes
	G.9 Foreign geometry evaluator codes
	G.10 Rollmark operation codes

	Go Tokens and Error Codes
	H.1 Introduction
	H.2 Ifails
	H.3 Codes
	H.4 Line types
	H.5 Segment types
	H.6 Error codes

	Legacy Functions
	I.1 Introduction
	I.2 Pixel drawing functions
	I.2.1 GOOPPX – open output of encoded pixel data
	I.2.2 GOPIXL – output encoded pixel data
	I.2.3 GOCLPX – close output of encoded pixel data

	I.3 Rollback file handling functions
	I.3.1 FFOPRB – open rollback file
	I.3.2 FFSEEK – reset file pointer
	I.3.3 FFTELL – output file pointer


	Index

