struct PK_PARAM_sf_s { PK_INTERVAL_t range; --- permitted range of parameter values PK_PARAM_bound_t bound[2]; --- token describing entity bounds PK_PARAM_periodic_t periodic; --- token describing entity periodicity PK_PARAM_form_t form; --- token describing entity form PK_LOGICAL_t continuous; --- whether continuous }; typedef struct PK_PARAM_sf_s PK_PARAM_sf_t; This standard form describes the parameterisation of a geometric entity in one parametric direction. Description of fields: range: an interval defining the allowed range of parameter values. If the parametric range is infinite, then the values given here will be sufficient to include all that part of the geometric entity within the size box. bound: tokens describing the boundedness at either end of the parameter range. bound[0] describes the limit range.value[0], and bound[1] describes the limit range.value[1]. The token is one of the following: PK_PARAM_bound_infinite_c entity extends infinitely PK_PARAM_bound_extendable_c entity may be extended in this direction PK_PARAM_bound_bound_c entity may not be extended PK_PARAM_bound_closed_c ends of parameter range are coincident PK_PARAM_bound_degenerate_c for surfaces only, parameter boundary has no 3D extent periodic: token indicating whether the parameterisation is periodic. It has one of the values: PK_PARAM_periodic_no_c not periodic PK_PARAM_periodic_yes_c periodic continuously differentiable at seam PK_PARAM_periodic_seamed_c periodic but not continuously differentiable across seam form: token indicating the relationship between the parameterisation and 3-space extent. It takes one of the following values: PK_PARAM_form_linear_c parameter is proportional to distance along a straight line. For a surface the straight line corresponds to a constant value of the other parameter PK_PARAM_form_circular_c parameter represents an angle round a circle For a surface, the circle corresponds to a constant value of the other parameter. PK_PARAM_form_any_c not one of the above continuous: if PK_LOGICAL_true then all derivatives are continuous, otherwise all derivatives are not necessarily continuous.