struct PK_PARAM_sf_s
{
PK_INTERVAL_t range; --- permitted range of parameter values
PK_PARAM_bound_t bound[2]; --- token describing entity bounds
PK_PARAM_periodic_t periodic; --- token describing entity periodicity
PK_PARAM_form_t form; --- token describing entity form
PK_LOGICAL_t continuous; --- whether continuous
};
typedef struct PK_PARAM_sf_s PK_PARAM_sf_t;
This standard form describes the parameterisation of a geometric entity in
one parametric direction.
Description of fields:
range:
an interval defining the allowed range of parameter values. If the
parametric range is infinite, then the values given here will be
sufficient to include all that part of the geometric entity within the
size box.
bound:
tokens describing the boundedness at either end of the parameter range.
bound[0] describes the limit range.value[0], and bound[1] describes the
limit range.value[1]. The token is one of the following:
PK_PARAM_bound_infinite_c entity extends infinitely
PK_PARAM_bound_extendable_c entity may be extended in this direction
PK_PARAM_bound_bound_c entity may not be extended
PK_PARAM_bound_closed_c ends of parameter range are coincident
PK_PARAM_bound_degenerate_c for surfaces only, parameter boundary has
no 3D extent
periodic:
token indicating whether the parameterisation is periodic. It has one of
the values:
PK_PARAM_periodic_no_c not periodic
PK_PARAM_periodic_yes_c periodic continuously differentiable at seam
PK_PARAM_periodic_seamed_c periodic but not continuously
differentiable across seam
form:
token indicating the relationship between the parameterisation and 3-space
extent. It takes one of the following values:
PK_PARAM_form_linear_c parameter is proportional to distance along
a straight line. For a surface the straight
line corresponds to a constant value of the
other parameter
PK_PARAM_form_circular_c parameter represents an angle round a circle
For a surface, the circle corresponds to a
constant value of the other parameter.
PK_PARAM_form_any_c not one of the above
continuous:
if PK_LOGICAL_true then all derivatives are continuous, otherwise all
derivatives are not necessarily continuous.